
What Did They Do?
Deriving High-Level Edit Histories in Wikis
Peter Kin-Fong Fong

Department of Computer and Information Science
Faculty of Science and Technology

University of Macau
Macau S.A.R., China
Tel: +853-8397 4296

ma86515@umac.mo

Robert P. Biuk-Aghai
Department of Computer and Information Science

Faculty of Science and Technology
University of Macau
Macau S.A.R., China
Tel: +853-8397 4375

robertb@umac.mo

ABSTRACT

Wikis have become a popular online collaboration platform. Their
open nature can, and indeed does, lead to a large number of
editors of their articles, who create a large number of revisions.
These editors make various types of edits on an article, from
minor ones such as spelling correction and text formatting, to
major revisions such as new content introduction, whole article
re-structuring, etc. Given the enormous number of revisions, it is
difficult to identify the type of contributions made in these
revisions through human observation alone. Moreover, different
types of edits imply different edit significance. A revision that
introduces new content is arguably more significant than a
revision making a few spelling corrections. By taking edit types
into account, better measurements of edit significance can be
produced. This paper proposes a method for categorizing and
presenting edits in an intuitive way and with a flexible measure of
significance of each individual editor’s contributions.

Categories and Subject Descriptors

H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – collaborative computing. I.7.1

[Document and Text Processing]: Document and Text Editing –
Version control.

General Terms

Algorithms, Measurement, Design, Experimentation.

Keywords

Wiki, revision history, text differencing, edit categorization, edit
significance.

1. INTRODUCTION
Personal computers have long become the main writing tool for
many people, and collaborative writing has similarly moved to

computer-based applications. Web-based collaborative writing
platforms, such as wikis, allow more speedy and convenient
collaborative writing than before.

Wikis support easy creation and editing of interlinked pages by
using a simplified markup language, and editing directly within a
web browser [10]. They are designed in this way to encourage
broad participation in content creation. People use wikis to
facilitate interaction and collaboration, including on community
websites, corporate intranets, and knowledge management
systems. Wikipedia is a well-known example of a wiki-based
website, which uses a wiki system to develop an online
encyclopedia that is written and edited in its entirety by a
community of readers, or rather reader-editors.

A wiki software usually saves all previous versions, also called
revisions, of any single page. Typically a “history” view is
provided to present all previous versions to the user, enabling all
participating writers to track the edit process and progress of an
article. The history view normally offers a “diff” function which
displays the difference (addition, deletion and modification)
between any two distinct versions of an article, so editors do not
need to manually compare the text by themselves [5]. In addition,
summaries of each edit may also be provided, including the size
difference in characters from the previous version, a short line of
summary text provided by the editor, etc. These summaries can
help other editors to understand what has changed in the new
version without having to look into the text. However, the
difference counted as a number of characters does not expose the
nature of the edit, and a summary text is not always provided.
Even where a summary text is provided it may be unable to
comprehensively reflect the nature of the edit.

There are scenarios when we wish to know which kind and how
significant a change has happened in an edited text without
having to manually examine each version of a document. For
example, in a large wiki with many active editors, the number of
documents and their respective versions can be enormous, making
it difficult, if not impossible, to identify the role of each writer
(e.g. who is content contributor, who is editor, who formats
content, who is proofreader etc.) through unaided human effort. A
computer aid to derive an intuitive editing history, reflecting high-
level changes between versions in a way close to human
perception, would allow users and other applications to know
what kind of changes actually happened in each edit, rather than
just a “differences of words” which wiki systems offer nowadays.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

WikiSym '10, July 7-9, 2010, Gdańsk, Poland

Copyright © 2010 ACM 978-1-4503-0056-8/10/07... $10.00

An edit history analyzer can help us to solve the above problem.
Such an analyzer takes two versions of a document as input,
processes and analyzes the relation between these versions, and
then outputs a list of edits that have been made, identifying their
type and significance. From that detailed edit information one can
further derive more summarized information, including a
classification of authors by their usual type of edit, automatically
generate an edit summary, measure an edit’s significance, and
many others. This paper proposes such an edit history analyzer.

Significance is a subjective measure of how important a given
editor’s contribution is. Significance depends on the type of a
given edit, as well as its volume. Edit types include actions such
as adding text, inserting references, formatting text, correcting
spelling, etc. Adding new text to an article is usually regarded as
the most significant type of edit, whereas fixing spelling and
punctuation errors could be considered one of the least significant
ones. The exact ranking and relative value of these types is
dependent on the value system of a given community of wiki
editors and should be determined through group consensus. Given
a new revision of a text, the individual edits within it can be
identified and categorized over the set of defined edit types. The
volume of text involved in these types of edits (such as adding
new text), or the number of occurrences of a particular type of
edit (such as inserting an internal link) determines the magnitude
of edit significance. With a system of edit significance in place, it
can be calculated to determine who the most significant authors of
an article are. Thus, similar to how author names appear in their
order of significance of contribution on a traditional publication
such as this paper, a wiki article too could show an ordered list of
its authors based on calculated significance taken over all of its
revisions.

Intuitiveness means that a software’s interpretation of a fact, such
as what types of edits someone has performed, is in agreement
with a majority of users.

The remainder of this paper is structured as follows. After
reviewing prior work on differencing, categorizing versioned text,
and analyzing editing histories in wikis in Section 2, we propose
our method of high-level edit history analysis in Section 3. In
Section 4 we present a prototype implementation of our method,
and show a preliminary evaluation of our work, using real world
examples, in Section 5. Finally we discuss some potential
applications of our method in Section 6.

2. RELATED WORK
Several researches have focused on analyzing and visualizing edit
histories of articles in wiki systems. Edit histories have been
visualized as a history flow diagram (Viégas et al. [18]), and as a
tree of versions (Sabel [13], Ekstrand and Riedl [6]). Those
visualizations are generally based on simple equality comparisons,
or similarities between versions based on sentence or word
differences. None of them classifies edits into different categories.

Author contribution measure is another area that frequently digs
into the version history of articles. Existing methods depend on
word-based text differences (Adler et al. [2], Kittur et al. [9]) with
no distinction of types of content (body text, reference, image,
markup etc.). To the best of our knowledge, we are not aware of
any prior work that attempts to categorize edits in a wiki by an
algorithm as we propose, besides labeling reverted versions.

In the following paragraphs, we review some text differencing
algorithms used by other wiki researchers, as well as some
research related to categorizing edits.

2.1 Differencing Algorithms
Longest common subsequence (LCS) based text differencing
methods, represented by the Unix diff utility [8], produce a
difference statement in terms of insertion, deletion and
replacements relative to an old version of a text. MediaWiki, the
software which Wikipedia runs on, employs this kind of method
to display differences of wikitext. Some methods are based on it
to calculate edit distances as well, e.g. [9] and [13]. However, the
kind of difference statement produced is not very satisfactory, as
it does not recognize text movements, i.e. where a piece of text
has moved up or down relative to its previous location. In this
case the output of these methods is a deletion of the text in the old
version and the addition of the same piece of text in the new
version. Text movement is a possible edit action in many
situations, for example when re-structuring an article. Therefore, a
difference engine that marks the differences in terms of insertion,
deletion, block moves, and replacements would be preferable.

Tichy [17] has proposed a different approach for text
differencing. His algorithm generates an edit script in terms of
copying blocks of characters from the old version, and then
adding missing characters to construct the new version. While the
algorithm originally aims to produce a minimal edit script, it can
be modified to produce a difference statement in terms of
insertion, deletion, replacement, and block match. Especially
block matches can be out of order, which makes the algorithm
more preferable than the LCS-based method when content
movements are of interest to the user. This algorithm was adopted
and refined by Adler and de Alfaro [1] for author trust calculation
in Wikipedia, implemented in their WikiTrust system, and later
used in author contribution measures [2].

In terms of granularity, differencing on word level alone cannot
generate a good difference statement for human understanding, as
Neuwirth et al. [13] suggest. Their proposed algorithm is based on
Myers’ basic diff algorithm [12]. It differences two versions of a
document with hierarchical decomposition strategy that exploits
the grain size (paragraph, sentence, phrase, word, character).
Their method differences versions of a document of coarse grain
size (e.g. paragraph) first, and if the compared strings have little
in common it is reported as “whole string has changed”. On the
contrary, if the compared string has many commonalities, finer
grain size differencing is conducted. This process repeats until
differencing is performed on the finest level. Since it only shows
fine level differences when the edit distances are small, and
concludes that two blocks are entirely different when the edit
distances are big, fragile difference statements are avoided.

MediaWiki currently performs two levels of text differencing,
paragraph level and word level, but word level differencing is
presented even if a paragraph is changed heavily. This approach
sometimes generates hard-to-read difference statements. Figure 1
shows an example illustrating this problem, extracted from an
article in the English Wikipedia1.

1
http://en.wikipedia.org/w/index.php?title=United_

States_Department_of_State&diff=prev&oldid=32189

0088

2.2 Edit Categorization
A wiki teaching environment by de Pedro [4] categorizes edits for
student evaluation purpose. The system requires its student editors
to categorize their own edit into one or more categories, for
example “markup improvement” or “new information”. If the
system were able to suggest edit categories for students, as we are
proposing here, time used to categorize edits could be reduced.

A study of the evolution of a concept in the Wikipedia article
“Web 2.0” conducted by Gorgeon and Swanson [7] classifies
edits into several categories. Some of these categories are already
in common use among Wikipedia editors, such as “vandalism”
and “spam”. Others are defined by the authors for their study
purpose, for example “unchallenged” and “challenged” edits.
They examine each of the 3,665 edits individually to classify
them, a task that is described in the paper as “simple but tedious”.
This would be another suitable candidate for automated
classification by software. If the task could be automated, or at
least semi-automated, articles and versions could be examined on
a larger scale, and a bigger picture of article evolution in general
could be drawn.

3. EDIT HISTORY ANALYZER
Our proposed edit history analyzer takes two versions of a
document as input, analyses the differences, and outputs a list of
summaries of changes. The analyzer is divided into four parts,
working step-by-step. Following the order of steps, they are
lexical analyzer, text difference engine, action categorizer, and
history summarizer. Figure 2 depicts their relationship.

The lexical analyzer breaks the raw text into tokens and sentences
so that the text can be analyzed easier in the following steps. The
text difference engine compares two versions of the text, and
produces a list of edits in terms of basic edit actions, such as
insertion, deletion, movement and replacement. The action
categorizer takes the basic edit actions and classifies them into
different categories, from minor ones like spelling correction,
sentence re-arrangement, inter-language links, internal link
insertion, to major revisions like new content addition, whole
article re-structuring, and many others. The history summarizer
collects all action meta-information recognized in the previous
step, and makes summarized statements about the revision, such

as the proportion of newly added content, spelling corrections,
formatting, etc.

The following sub-sections describe each step of the proposed
method in more detail.

3.1 Lexical Analyzer
When the system receives a new version of an article, it first
passes the text into a lexical analyzer. In our system, the lexical
analyzer is used to break an article’s raw character stream into
tokens of words, punctuation and markup symbols, and then break
the token stream into sentences.

3.1.1 Tokenizer
The tokenizer transforms a sequence of characters into a sequence
of tokens by applying certain grammar rules. It is used in our
system to make sure markup symbols are not broken apart, and to
identify those markups. Each wiki software usually has its own
specific set of system-specific markups. For example, MediaWiki
and Twiki use a different set of markup symbols. In the
tokenizing process we translate the markup symbols into tokens
that reflect the semantics of the markup, thus platform-neutral
differencing and categorizing is possible. Since different markup
languages have different language specifications, a different set of
grammar rules is needed for the tokenizer. Table 1 shows some
examples of wiki markup used by MediaWiki.

To illustrate the usage of the tokenizer, here is an example
wikitext in MediaWiki markup format. The original source text is:

'''Paris''' ({{pron-en|'parıs}} in [[English

language|English]]) is the [[Capital

(political)|capital]] and [[primate city]] of

[[France]].

After lexical analysis, it is broken into a string of tokens. Symbol
characters that belong to wiki markup are grouped together as a
single token.

''' Paris ''' ({{ pron-en | ' parıs }} in

[[English language | English]]) is the

[[Capital (political) | capital]] and

[[primate city]] of [[France]] .

Figure 1. A hard-to-read difference statement in English

Wikipedia

Figure 2. General structure of proposed edit history

analyzer

A type is given to every token during the lexical analysis process.
The first token of the above example is of type “bold-open”,
followed by a “word” token, “bold-close”, “punctuation”,
“template-opening”, “template-name”, and so on. Type of token is
used in the following steps to split token sequences into sentences,
and categorize edit actions.

3.1.2 Sentence Splitter
After tokenizing the source wikitext, the token sequence is passed
to a sentence splitter, which splits the sequence into a number of
sentences.

Methods have been proposed on this topic by researchers in the
natural language processing area, e.g. SATZ, which uses neural
network based methods [14]. We are currently using a naïve
sentence splitting method, which delimits the sequence when it
encounters sentence-ending punctuations, such as a period (full
stop), exclamation mark or question mark. A few exception rules
have also been implemented, e.g. “repetition of single character
and dot” pattern is recognized as an acronym. While this naïve
method is not perfect, it works in most test cases in Simple
English Wikipedia. A more sophisticated method may be
employed in the future.

Besides basic plaintext sentence delimiting, we should also
consider a few additional situations in the context of wikitext:

� A list item markup symbol should be treated as a sentence
delimiter.

� A heading should be treated as a sentence by itself. The same
applies to category and inter-language links.

� In-line references should be extracted from the content text and
treated as a separate sentence. This is because references are
presented separately in the article.

3.2 Text Difference Engine
The next step of analysis is to calculate the difference to the
previous revision, in order to find out what has changed from the
previous version to the current version.

As discussed in Section 2.1, single level text differencing is not
capable of generating a good difference statement for human
understanding, thus two levels of differencing are performed. The
two levels we use are sentence level and token level. Unlike
MediaWiki, we use sentence level instead of paragraph level as

the larger unit, because it is the basic linguistic unit in human
language. Tokens are used instead of just words, because we want
the system to be aware of markup changes.

First, sentence level matching is performed, looking for exact
matches between whole sentences. Then for all sentences not
matching exactly, token level differencing is performed. Finally,
sentence matching rates between old version sentences and new
version sentences are calculated based on token level difference
results for approximate sentence matching.

3.2.1 Basic Edit Actions
Given a document D with versions V1, V2, …, Vn, each of them
contains a sequence of tokens Vi = [t1, t2, …, tl]. In the following
paragraphs, we denote

� Vi[x]: xth token in the token sequence of Vi

� Vi[x…y]: subsequence of tokens of Vi, from xth token to yth token
(1 ≤ x ≤ y ≤ l). Note that Vi[x…x] = Vi[x]. We define Vi[x…y] =
[] (empty sequence) when x > y.

� li: number of tokens in Vi.

� a^b: concatenation operation, which creates a new token
sequence from all tokens in first operand a, followed by all
tokens in second operand b.

A basic operation op transforms a sequence of tokens from one
state to another state, and includes insertion, deletion, movement
and replacement. A revision Ri is a sequence of basic operations
opi,j that are applied to Vi to construct Vi+1. The following defines
each of the four basic operations:

� Insertion is an operation that introduces a sequence of n new
tokens Tnew = [t’1, t’2, …, t’n] after a certain position p.

Insert(Tnew, p): Vi → Vi [1…p] ^ Tnew ^ Vi [p+1…li],

(0 ≤ p ≤ li)

� Deletion is an operation that removes a series of k tokens from
position p.

Delete(k, p): Vi → Vi [1…p-1] ^ Vi [p+k…li],

(1 ≤ p ≤ li , p < p+k ≤ li +1)

� Movement is an operation that moves a series of k tokens from
position p to position q.

� Replacement is defined as a combination of insertion and
deletion operation, in the way that the insertion operation of n
new tokens immediately follows the deletion operation of k
tokens at position p.

Replace(k, tnew, p): Delete(k, p); Insert(Tnew, p),
where Tnew = [t’1, t’2, …, t’n]

3.2.2 Basic Differencing Algorithm
The basic token differencing algorithm is based on the text
matching algorithm used by WikiTrust [1], which is in turn a

Move(k, p, q): Vi → Vi [1…q-1] ^ Vi [p…p+k-1] ^

Vi [q…p-1] ^ Vi [p+k…li],
when 1 ≤ q < p < p+k ≤ li +1 ;

Vi → Vi [1…p-1] ^ Vi [p+k…q] ^

Vi [p…p+k-1] ^ Vi [q+1…li],
when 1 ≤ p < p+k ≤ q ≤ li +1

Table 1. Some basic wiki markup in MediaWiki

Markup Meaning Occurrence

[URI Text] External link Anywhere

[[Text]] Internal link Anywhere

[[File:name.jpg]] Image Anywhere

{{Text}} Template Anywhere

'''Text''' Bold Anywhere

''Text'' Italic Anywhere

<ref>Text</ref> Reference Anywhere

* Text Unordered list item Beginning of line

Text Ordered list item Beginning of line

---- Horizontal Line Beginning of line

== Text == Title (2nd level) Beginning of line

=== Text === Title (3rd level) Beginning of line

variation of a greedy matching algorithm ([3], [17]). The basic
idea of the differencing method is to match the old version’s
chunks of sentences or tokens in the new version, and to label
unmatched old version chunks as deleted and unmatched new
version chunks as added.

The first step of differencing is matching. First, the chunks
(sentences or tokens) in the new version are indexed and placed
into a hash table. Then the old version is scanned from beginning
to end. For each chunk (containing one or more sentences or
tokens), find occurrences in the new version. If such a chunk is
found in the new version, advance the cursor position in the old
version and new version simultaneously, and match the chunks
until no more matches can be found. Matched positions are stored
into a maximum heap, ordered by length of the match.

After the entire old version has been scanned through, matches
are removed one by one from the heap and recorded. Using a
maximum heap can guarantee that the longest possible matches
are found first, while short matches contained within can be
ignored.

After matching is finished, unmatched portions can be processed.
The process of handling unmatched sentences is different from
that of unmatched tokens. Unmatched sentences are concatenated
and passed to the same matching algorithm, to conduct token
level differencing. Unmatched token handling is discussed in the
next section.

3.2.3 Token Differencing
Unmatched tokens appearing only in the old version can be
marked as deleted, and unmatched tokens appearing only in the
new version can be marked as inserted. Replacement can be
marked as deletion and insertion at the same position. This can be
discovered by checking previous matched chunk and next
matched chunk of each deletion and insertion, to see if they are
the same matched chunk or not.

3.2.4 Sentence Differencing
For each sentence in the old version, a matching rate is computed
against every sentence in the new version. If we denote:

• The number of tokens in the ith sentence of old version as loi ,

• The number of tokens in the jth sentence of new version as lnj,

• The number of common tokens between the above two
sentences as lci,j,

• The matching rate between the above two sentences as mi,j

Then the matching rate can be calculated by the formula below

mi,j = 2 × lci,j / (loi + lnj)

Since the number of common tokens will never exceed the two
numbers of tokens in both sentences, the upper bound of matching
rate is 100%, which happens when two sentences are identical.
The lower bound is 0%, which happens when two sentences have
no common tokens. If the matching rate is greater than a certain
threshold, the two sentences are considered approximately
matched, which means the sentence in the new version is based on
the sentence in the old version. We currently have set the sentence
matching threshold to 40%. This value was determined
empirically through several experiments on Simple English
Wikipedia data, and can be changed as needed.

If the text revision contains sentence merging (combining two or
more sentences into one new sentence) or splitting (separating one

sentence into two or more sentences), only calculating a matching
rate against a single sentence may not reflect the edit situation
very well. However, this occurs quite frequently in edited text.
For example, the old version may contain these two consecutive
sentences: “Apple is a fruit. It usually has red skin.” It could be
merged in the new version like: “Apple is a fruit that usually has
red skin.” In order to detect these cases, we attempt to combine
consecutive sentences in the old version, and see if there is any
improvement in the matching rate:

ji
m

j
nl

i
lo

i
lo

ji
lc

ji
lc

,
1

)
,1,

(2
>

+
+

+

+
+×

If the matching rate increases, the two sentences in the old version
are marked as merged into one sentence in the new version. In the
case of the above example we would find that neither of the two
sentences in the old version taken individually match the merged
sentence in the new version very well (53% and 50%,
respectively), but when merging these two sentences from the old
version the matching rate increases significantly (to 76% in this
example). The merging process can be repeated, trying to merge
more sentences and to maximize the matching rate. The same
method can be applied to sentences in the new version, the result
of which reflects sentence split.

A sentence with its maximum matching rate to other sentences
lower than the defined threshold is considered as completely
removed (if it is in the old version) or completely new (if it is in
the new version). This decision is based on the finding in [13]:
reporting them as completely new or removed is more close to
human understanding.

3.2.5 Movement Detection
Conceptually, a matching chunk (of either sentences or tokens)
whose relative order in the sequence of chunks has changed is
considered a case of movement. We can check if there are
movements of chunks by labeling each match with its ordinal
position in the old version, then check if they are sorted or not in
the new version. If it is not, label the match with the greatest
position offset as moved, and remove it from the match set.
Repeat the above process until no more inversion is found. All
movements should be labeled at that time.

In practice, we find that matches shorter or equal to three tokens
are usually common word phrases. For instance in an article on
“green tea” it is common for many occurrences of this phrase to
appear. Displaced short matches are unlikely to be real moves but
instead are more likely cases of deletion and insertion of the same
word phrase that happen in different locations. Thus we only
consider a displaced match as a move if it is longer than three
tokens.

3.3 Action Categorizer
With differences of revisions on hand, we can do further analysis
on those basic edit actions and try to discover and categorize
higher level edit actions. A rule-based categorizer can be used to
extract various such edit actions. Rules can be customized to
better capture these high-level edit actions. Additional
comparison or computation can be done following the rule-based
categorizer to extract the detailed nature of the edit action. For
example, we can calculate the character level edit distance of
original and current text when a short phrase replacement is
encountered (for instance when “haelth” is replaced with

“health”), to find out if it is a spelling correction or a term
replacement.

3.3.1 Rule-based Categorization of Edit Action
With a list of basic edit actions, we can further categorize them
based on the type of action, type or content of tokens in the edit,
or a combination of them.

In the following paragraphs, we denote

� a: Basic edit action (Insert, Delete, Replace, Move)

� t: Token (Belongs to certain type such as markup tags, words,
link content, etc.)

� string(t): The string representation of t

� type(t): The token type of t

� distance(s1, s2): Character edit distance between s1 and s2

� Told = Vold[p…p+k-1]: a shorthand notation that denotes either
deleted token sequence in Delete(k, p), or replaced token
sequence in Replace(k, tnew, p)

With the symbols above, we can define rules about edit actions.
Edits that match the rule are classified into the category the rule
represents.

Consider this simple example. The wiki markup contains the
opening tag of a reference “<ref>”. If we encounter this tag in a
chunk of newly inserted text we know that an instance of a
reference was added. This edit, which on the level of basic edit
actions is simply an Insert, can further be categorized as being of
type Reference by following rule:

a = Insert(Tnew, p) ∧ type(Tnew[1]) ∈ (ref-open)

(which says the action is an Insert at position p and the first
inserted token is an opening tag of a reference).

The rule can examine both type and content of the token, and
check every token in the edit. For example, an inter-language link
addition can be defined as follows

a = Insert(Tnew, p) ∧ ∃ ti ∈ Tnew, (type(ti) ∈ (intlink-prefix) ∧

string(ti) ∈ (InternationalPrefix))

where InternationalPrefix = {ar, de, en, …}

This rule checks each token in the inserted token sequence,
checks if an internal link prefix token exists, and if it contains a
language code that exists in the language list.

A more complicated rule may depend on multiple basic edit
actions. Here is a (simplified) definition of wikify, a high-level
edit action which formats an article by surrounding existing text
with wiki markup.

a1 = Insert([tn1], p1) ∧ a2 = Insert([tn2], p2) ∧ p1 < p2 ∧ (

(type(tn1) ∈ (bold-open) ∧ type(tn2) ∈ (bold-close))

∨ (type(tn1) ∈ (italic- open) ∧ type(tn2) ∈ (italic- close))

∨ (type(tn1) ∈ (intlink- open) ∧ type(tn2) ∈ (intlink- close))

∨ (type(tn1) ∈ (extlink- open) ∧ type(tn2) ∈ (extlink- close))

This rule recognizes a pair of markup tags inserted in the existing
text, and checks if the pair is of the same markup type.

3.3.2 Additional Comparisons
After an edit action is categorized, we can apply additional
comparisons to find out more detail about the edit. For example, a
replacement of pure word tokens (i.e. no markup tags) can be

further examined by calculating the character edit distance
between them.

a = Replace(k, Tnew, p)

∧ ∀ ti ∈ Told, type(ti) ∈ (word)

∧ ∀ ti ∈ Tnew, type(ti) ∈ (word)

∧ distance(string(Told), string(Tnew)) < 3

The character edit distance used is the Levenshtein distance [11],
which is the minimum number of character edits required to
transform one word into another. If this distance is smaller than a
certain threshold, for example 3 as in the above example, then the
edit can be categorized as a spelling correction.

3.4 History Summarizer
After all the individual edits have been categorized, we can
summarize the list of edits. This step includes grouping categories
of edits into more abstract groups, such as copy edit, rule
enforcement, content addition, etc., and then counting the number
of changes and their proportion in the edit for each group. Other
statistics that are useful for the user or other applications can also
be calculated in this step.

In particular, we are interested in the calculation of edit
significance. A calculation method of edit significance can be
based on a weighted sum formula. In the previous step, some edit
actions were classified into categories of high-level edit actions,
whereas others do not belong to any such category. Table 2 shows
some examples of edit actions and content categories.

Every edit performed is categorized at the highest possible level
and only appears once in the list of edits. That is, if an edit action
is classified as a certain basic edit action and later as a high-level
edit action, it is only listed as the high-level edit action and not as
the basic edit action. For instance, an edit may be categorized as
the Replacement basic edit action, whereas this same edit is later
recognized to be a Spelling Correction. In this case it is only
listed as the latter edit action and not the former. This is in order
to avoid repeated occurrence of the same edit.

Once all edits have been categorized to the highest possible level,
edit significance can be calculated, according to following
weighted sum formula:

∑

=

+++=

∑

=

∑

=

=

+=

n

i
imov

c
imov

w
irepl

c
irepl

w
idel

c
idel

w
iins

c
iins

wbasics

m

x

n

i
ix

c
ix

w
high

s

basicshighss

1
,,,,,,,,

1 1
,,

Table 2. Some edit actions and edit categories

Edit Action Content Category

(Basic)

Insertion
Deletion
Replacement
Movement

(High Level)

Spelling correction
Remove ambiguity
Layout change
…

Editorial Template
Info Template
Table
Wiki Markup
Reference
Image
Inter-language Link
Category
Body Text
…

where

• wx,i – weight of content category i on edit action x. (wx,i ≥ 0)

• cx,i – edited content scale of content category i on edit action
x. (cx,i ≥ 0)

In certain categories, such as body text, the length of the edited
text is relevant to the edit significance, whereas in other
categories, such as reference, the length is irrelevant but the
number of occurrences is. Therefore, cx,i can either represent
length or number of occurrences, depending on the category.
Since both wx,i and cx,i are unbounded, the significance value has
the range [0, ∞).

Weights need to be subjectively assigned according to perceived
relative significance of different edit actions and different content
categories. We expect that a wiki user community, including its
active contributors, would collectively determine these weights to
match the group’s perception of value. Thus unless standard
weights are used, a significance measure is not portable across
different communities.

4. PROTOTYPE IMPLEMENTATION
We have implemented a prototype of our analyzer in the Java
programming language. It takes two pieces of text as input and
produces a list of categorized edits as output. The analyzer is
designed to work on MediaWiki texts. Currently our prototype
can process the first three steps of our analyzer, while the history
summarizer is still under development.

In addition, we have developed a MediaWiki extension in PHP.
This extension extracts two versions of an article from the wiki
database, calls the above Java program to analyze the revision
process, and formats the output to show the differences between
versions, categorized by the analyzer. An “edit analysis” tab is
added on top of every article in the main namespace (i.e.
excluding talk and other pages), which links to the analyzer when
clicked. Figure 3 shows an example of the edit analysis page.

To demonstrate our prototype analyzer and MediaWiki extension,
we installed them on a MediaWiki server using a database dump
of the Simple English Wikipedia2. For experimenting with our
analyzer on the server, we chose several articles and performed an
edit analysis on them. Following is the demonstration of our edit
analyzer.

2 31st December 2009 database dump, with 57,448 articles.

4.1 Differencing
We compare our difference engine output with the one used in
MediaWiki. As discussed in Section 2.1, the longest common
subsequence (LCS) based algorithms cannot recognize content
movements. We also have shown that paragraph-word level
differencing used by MediaWiki may produce hard-to-read
difference statement. By using a greedy block matching
algorithm, and sentence-token level differencing, we expect our
algorithm to produce better difference statements in terms of
intuitiveness, i.e. in close agreement with what a human evaluator
would determine.

Testing both algorithms through several example articles shows
that our algorithm meets our expectations. To illustrate this, we
tested the differencing on a pair of consecutive versions of the
article “Film noir” 3 . MediaWiki shows that there are two
paragraphs changed and one new paragraph added (Figure 4),
while our algorithm shows there is a sentence moved, a new
sentence added, a sentence changed, and a sentence expanded to
two sentences in the new version (Figure 5), which appears to
reflect the actual edit situation more closely. In particular,
because of MediaWiki’s paragraph-level differencing, two
sentences in the first paragraph are incorrectly marked as deleted,
then added into the same relative position. Sentence level
differencing avoids this situation, ignoring the boundary between
paragraphs.

4.2 Edit Action Categorization
We have defined several categorization rules in our prototype
action categorizer. The rules are some frequent edit actions in
Wikipedia, such as wikify, inter-language link addition, category
modification, reference addition, content modification, spelling
correction, etc. Our tests applied the categorizer to several articles
in the Simple English Wikipedia. Results show that all defined
edit actions can be correctly categorized. Take two versions of the
article “Tropical Storm Barry (2007)” 4 as an example (Figure 6).
Categorized edits showed that two pieces of text were wikified,
one word with its markup removed, two numbers were substituted
with the spelled-out variant, a piece of text was added and a piece
of text was removed. The derived edit list appears as follows:

Wikify Ins([[[miles per hour|], 206); Ins([]]], 212);

Wikify Ins([[[wiktionary: wildfire|], 425); Ins([]]],
430);

Dewikify Del([[[], 352); Del([]]], 354);

ContentSubstitution Repl([3], 291, [three], 298);

ContentSubstitution Repl([2], 378, [two], 383);

ContentRemoval Del([quickly forming], 125);

ContentAddition Ins([that formed quickly], 129);

Note the first two and the last edit which each involved two
spatially separated chunks, the first containing a starting tag and
the second the matching closing tag. This text matching and
categorization goes far beyond the ability of MediaWiki and other
text differencing applications which do not consider the type of
the text analyzed and thus only look at words in contiguous

3
http://simple.wikipedia.org/wiki/index.php?title=

Film+noir&diff=296841&oldid=prev
4
http://simple.wikipedia.org/w/index.php?title=Tro

pical_Storm_Barry_%282007%29&diff=next&oldid=134

1489

Figure 3. Edit analysis tab extension in MediaWiki

chunks, not as separated pairs such as matching opening/closing
tags. Again, the result obtained closely matches a human
evaluation of the revisions performed. Defining a comprehensive
set of categorizing rules is still a work in progress. We will
perform more testing on various articles once this definition is
finished.

Whereas we have not yet performed any formal performance
evaluation, running the text differencing and edit categorization
for pairs of revisions from the Simple English Wikipedia on a

standard desktop PC results in acceptable performance in the
range of 0.1 to 2 seconds, depending on the size of the revisions
and the amount of changes. For a medium-sized production server
it would be desirable to hook the edit categorization to the page
save event, thus creating (and saving in the database) edit lists on
an ongoing basis. Moreover, it may also be desirable for this to
run on a separate analysis server machine rather than the main
wiki server machine to prevent an adverse performance impact on
wiki users.

Figure 4. Difference page of article “Film noir” produced by MediaWiki analyzer (background colours: yellow/green – old/new

version paragraph changed, gray – paragraph unchanged; text colour: red – word changed (deleted, inserted))

Figure 5. Difference page of article “Film noir” produced by our edit history analyzer (background colours: yellow – sentence

changed, blue – sentence moved, green – sentence added; text colours: red – word deleted; blue – word moved, green – word

inserted)

5. PRELIMINARY EVALUATION
To evaluate the effectiveness of our prototype system we
conducted a small scale evaluation. Ten human evaluators were
given a pair of consecutive revisions for each of two Simple
English Wikipedia articles, and were asked to manually compare
them and point out the changes between them. After the
completion of this task they were presented with the edit list
corresponding to these pairs of revisions as produced by our
program and asked to indicate whether they agreed or disagreed
with our program’s interpretation of what had changed in the
articles. If they disagreed they could state a reason why they
thought they disagreed.

Ten articles were selected from the same Simple English
Wikipedia database mentioned in the previous section. The
articles were selected based on the length of their latest revision,
with lower and upper thresholds of 2000 and 41000 characters,
respectively, and about equal intervals on a quadratic distribution
within this range. For each chosen article, we selected the most
recent pair of consecutive revisions for which our program output
the longest edit list below an upper limit of 20 edits (to make the
human review task reasonably short). The 10 chosen revisions
contained 2 to 18 edits.

We invited 10 student volunteers to participate in the evaluation.
They were about equally distributed in terms of gender (6 male, 4
female), technical background (4 from computing science majors,
6 from business or humanities majors), and education level (5
undergraduates, 5 postgraduates). Each of them was given two
articles to review, a shorter and a longer one. As we had selected
10 articles, each one was evaluated twice by two distinct
evaluators. Printouts of both old and new revisions were presented
to them (end-user view, not source wiki text). Identical
paragraphs in old and new revision had been removed from the
article before it was presented, to reduce evaluators’ workload.
We then asked them to mark and categorize changes between the
two revisions manually. After they finished marking, the edit list
generated by our prototype was presented to the evaluators. For
each item in the list, we asked them if they agreed with the
machine categorization or not, and to state the reason of

disagreement if any. The whole process took about 30 minutes for
each evaluator.

The result of the evaluation shows that our prototype system can
produce edit histories that are largely in agreement with human
interpretation of changes. 11 out of 20 evaluations agreed 100%
to our edit list, and the remaining 9 evaluations ranged from
33.3% to 88.9% agreement. Overall the average agreement rate
from all 2 x 10 evaluations was 84.1%. No significant differences
were found between the different evaluator groups (male/female,
technical/non-technical, undergraduate/postgraduate). The low
agreements (33.3% in the case of the article “Nuclear physics”)
were due to an expectation on the part of the evaluators regarding
how a change should be interpreted, specifically expecting our
program to be more or less as “clever” as themselves. To illustrate
this: in the old revision of this article the sentence fragment
“electrons quickly go around the nucleus” became “electrons
move around the nucleus very quickly” in the new revision
(changed parts underlined). One evaluator expected that replacing
the word “go” with “move” and moving the word “quickly” to the
end should be considered as a single edit, as these two changes
taken together preserve the sentence’s meaning. The insertion of
the word “very”, on the other hand, could be considered a
separate edit. However, as our program tries to identify the
longest sequence of words in a single edit, and has no
understanding of the grammar of the underlying language (here
English), it considers “quickly go” as one sequence in the old
revision, and “very quickly” as one sequence in the new revision.
This particular example led us to add another rule to our
differencing algorithm: if the move of a sequence of tokens takes
place within a sentence, it will be considered a move regardless of
the length of the token sequence (unlike moves crossing sentence
boundaries for which a threshold applies, in our case a minimum
length of four tokens).

Through this evaluation we collected valuable feedback that we
are using to make further adjustments to our prototype. The
results, however, confirm to us that our edit lists are on the whole
close to how human evaluators interpret changes in the text.

Figure 6. Difference page of article “Tropical Storm Barry (2007)” produced by our edit history analyzer

6. CONCLUSIONS AND FUTURE WORK
Research in text differencing algorithms goes back many years.
However, when edits are non-trivial, text difference statements
produced by these algorithms for a pair of texts can indicate larger
and more complicated changes than a human evaluation of those
texts would produce. In this paper we have proposed a new text
differencing and edit categorization method. By adding a
tokenizing step and some tweaks to existing differencing
algorithms, we can produce a difference statement closer to
human evaluation. This difference statement can be used to
classify edit actions into categories, and generate summary
statements about the edit. Moreover, our algorithm and method
are largely language-independent, and are applicable to any
alphabet-based language that uses common sentence-ending
tokens (full stop, exclamation mark, question mark etc.) and
whitespace to separate words. This mainly excludes East Asian
languages (Chinese, Japanese, Korean) and possibly some others.

Our preliminary evaluation on articles from the Simple English
Wikipedia shows that our method can produce a better difference
statement compared with the MediaWiki differencing engine, and
correctly classify each edit into its appropriate category. We see
the potential for our method to be applied to a broad range of
problems, including automatic summarization, edit classification,
edit significance calculation, author contribution calculation, and
author interest classification. Using our edit history analyzer to
scan through the entire Wikipedia database, interesting
observations of user edit patterns could be obtained.

At the time of writing, our history summarizer and edit
significance calculation are not fully yet implemented. Upon full
implementation we are planning to use categorized edit actions as
the basis to refine the edit significance calculation. We will seek
feedback from the wiki community to determine suitable weights
to be used in our proposed formula, and then perform a
comprehensive evaluation on the articles of English Wikipedia.

Our edit significance calculation model could also be applied to
our previous work on co-authorship degree calculation [16]. That
work only made a very simple determination of edit significance.
Using our new edit significance calculation model will allow a
more accurate result to be obtained.

Finally, we plan to release our program code as open source in the
near future.

7. REFERENCES
[1] Adler, B. T. and de Alfaro, L. 2007. A content-driven

reputation system for the Wikipedia. In Proceedings of the

16th international Conference on World Wide Web (Banff,
Alberta, Canada, May 08 - 12, 2007). ACM, 261-270.

[2] Adler, B.T., de Alfaro, L., Pye, I., and Raman, V. 2008.
Measuring Author Contributions to the Wikipedia. In
Proceedings of the 2008 international Symposium on Wikis

(Porto, Portugal, 2008). WikiSym '08. ACM.

[3] Burns, R. and Long, D. 1997. A linear time, constant space
differencing algorithm. In Proceedings of the Performance,

Computing, and Communication Conference (Phoenix,
Arizona, USA, Feb. 5-7, 1997). IEEE, 429–436.

[4] de Pedro Puente, X. 2007. New method using Wikis and
forums to evaluate individual contributions in cooperative

work while promoting experiential learning: results from
preliminary experience. In Proceedings of the 2007

international Symposium on Wikis (Montreal, Quebec,
Canada, October 21 - 25, 2007). ACM, 87-92.

[5] Ebersbach, A. 2008. Wiki: Web Collaboration. Springer, 2nd
edition.

[6] Ekstrand, M. D. and Riedl, J. T. 2009. rv you're dumb:
identifying discarded work in Wiki article history. In
Proceedings of the 5th international Symposium on Wikis

and Open Collaboration (Orlando, Florida, October 25 - 27,
2009). WikiSym '09. ACM, 1-10.

[7] Gorgeon, A. and Swanson, E. B. 2009. Organizing the vision
for web 2.0: a study of the evolution of the concept in
Wikipedia. In Proceedings of the 5th international

Symposium on Wikis and Open Collaboration (Orlando,
Florida, October 25 - 27, 2009). WikiSym '09. ACM, 1-4.

[8] Hunt, J. W. and McIlroy, M. D. 1976. An Algorithm for
Differential File Comparison. Computing Science Technical

Report, Bell Laboratories 41.

[9] Kittur, A., Chi, E., Pendleton, B. A., Suh, B. and Mytkowicz,
T. 2007. Power of the few vs. wisdom of the crowd:
Wikipedia and the rise of the bourgeoisie. Alt.CHI, 2007,
San Jose, CA.

[10] Leuf, B. and Cunningham, W. 2001. The Wiki Way:

Collaboration and Sharing on the Internet. Addison-Wesley
Professional.

[11] Levenshtein, V. I. 1966. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady
10, 707–710.

[12] Myers, E. 1986. An O(ND) Difference Algorithm and Its
Variations. Algorithmica, 1(2): 251–266.

[13] Neuwirth, C. M., Chandhok, R., Kaufer, D. S., Erion, P.,
Morris, J., and Miller, D. 1992. Flexible Diff-ing in a
collaborative writing system. In Proceedings of the 1992

ACM Conference on Computer-Supported Cooperative Work
(Toronto, Ontario, Canada, November 01 - 04, 1992). CSCW
'92. ACM, 147-154.

[14] Palmer, D. D. and Hearst, M. A. 1997. Adaptive multilingual
sentence boundary disambiguation. Computational

Linguistics.

[15] Sabel, M. 2007. Structuring wiki revision history. In
Proceedings of the 2007 international Symposium on Wikis
(Montreal, Quebec, Canada, October 21 - 25, 2007).
WikiSym '07. ACM, New York, NY, 125-130.

[16] Tang, L. V.-S., Biuk-Aghai, R. P., and Fong, S. 2008. A
Method for Measuring Co-authorship Relationships in
MediaWiki. In Proceedings of the 2008 international

Symposium on Wikis (Porto, Portugal, 2008). ACM.

[17] Tichy, W. F. 1984. The string-to-string correction problem
with block moves. ACM Trans. Comput. Syst. 2, 4 (Nov.
1984), 309-321.

[18] Viégas, F. B., Wattenberg, M., and Dave, K. 2004. Studying
cooperation and conflict between authors with history flow
visualizations. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (Vienna, Austria,
April 24 - 29, 2004). CHI '04. ACM, 575-582.

