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ABSTRACT

While text versioning was definitely a part of the original
hypertext concept [21, 36, 44], it is rarely considered in this
context today. Still, we know that revision control under-
lies the most exciting social co-authoring projects of the to-
day’s Internet, namely the Wikipedia and the Linux kernel.
With an intention to adapt the advanced revision control
technologies and practices to the conditions of the Web, the
paper reconsiders some obsolete assumptions and develops a
new versioned text format perfectly processable with stan-
dard regular expressions (PCRE [6]). The resulting deep
hypertext model allows instant access to past/concurrent
versions, authorship, changes; enables deep links to refer-
ence changing parts of a changing text. Effectively, it allows
distributed and real-time revision control on the Web, im-
plementing the vision of co-evolution and mutation exchange
among multiple competing versions of the same text.

Categories and Subject Descriptors

1.7.1 [Document and text processing]: Document and
Text Editing— Version control; H.5 [Information inter-
faces and presentation]: Hypertext/Hypermedia

1. RATIONALE

Historically, the object model of the World Wide Web
is a graph of pages connected by unidirectional links. In
this context, the value of a link is an association between
two pages. Evolution of a single page is an obstacle as it
potentially breaks links; it is out of the model’s scope. While
a web of pages may scale indefinitely, our perception can
not. Normally, we resort to a search engine ranking millions
of pages to cherry-pick those most relevant to us. There
also exists an alternative approach of fusing a multitude of
contributions into a singular document which an end user is
able to consume. Thus, the user’s perception is effectively
scaled up. The most notable example of the approach is the
Wikipedia and wikis in general. That process of knowledge
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fusion is inherently social and focuses on the evolution of a
document, exactly the process the World Wide Web omits.

Ironically, document evolution was addressed in-depth in
the original Xanadu hypertext model [36], albeit no con-
vincing usecase was provided. Currently, most of advances
in document evolution and revision control are made in the
context of Source Code Management (SCM). Considering
the wiki-world and Wikipedia in particular, typically the
employed revision control technology is as obsolete as you
can possibly get. That is especially clear if compared to the
recent developments in Distributed Revision Control Sys-
tems (DRCS) employed by the Linux kernel and other large-
scale software development projects. Another relatively new
development is the real-time revision control, which powers
group collaboration environments. Notable examples are
Etherpad, Google Docs, Google Wave.

Knowledge fusion scales our perception, but how can we
scale the fusion itself? Consider Wikipedia; it certainly faces
a scalability barrier [40, 38]. In case scalability issues are re-
solved, we may witness something even more useful and ex-
citing, perhaps a Web-scale Wikipedia housing both general
and specialized knowledge. Probably, we may borrow some
practices from the SCM field. Indeed, all the advanced SCM
techniques, such as optimistic locking, 3-way merge, branch-
ing, distributed revision control, etc, were not introduced for
the art’s sake. Each technique overcomes a certain scalabil-
ity barrier that have emerged once software projects became
sufficiently big. Consistently, SCM technology drifted to
higher degrees of parallelism, decentralization and auton-
omy and the recent DRCS boom is just another example.

The objective of this work is to develop a Web-ready re-
vision control technology which is perfectly distributed and
real-time, uniting the best of both worlds. Apart from the
promise of scalability, the technology potentially improves
usability/ accessibility/ availability of wikis [35] and enables
new uses, such as federated wikis with social filtration of
changes [24], or real-time brainstorming wiki (think Ether-
pad backed by git [3]) or simply offline use of wikis.

To give an introduction to the technical part of the prob-
lem we devote Section 2 to review the technological foun-
dations of revision control. In Section 3, we proceed to the
focal topic of this paper which is the adaptation of advanced
revision control technologies for hypertext versioning on the
Web. As a result, we come up with a vision of deep hypertext
carrying its history, authorship attribution and internal de-
pendencies. The section outlines a simple hypertext storage
format with embedded revision control. Then, in Section 4,
the concept is proven to be practical by implementing both



basic and advanced revision control operations, mostly rely-
ing on Perl-compatible regular expressions, which are read-
ily available not only in numerous programming languages,
but even in the constrained environment of a Web browser,
thanks to JavaScript. Next, Section 5 physical/practical
limitations are considered to ensure feasibility of the for-
mat and algorithms. The format is applied to hierarchically
structured texts. Section 6 hints at some promising im-
plications and consequences of the introduced technology.
Section 7 concludes.

2. REVISION CONTROL BASICS

I will first outline principles and inner workings of revision
control technologies. The most basic decision and tradeoff
of a revision control system is the versioned data storage for-
mat. The simplest storage format is snapshots: every single
version is kept in the storage. The simplistic approach has
a serious shortcoming: the space consumed by the storage
tends to grow as O(N?), where N is the size of the file, as-
suming the file grows in small increments, which is often the
case. The effect is caused by the fact that every small change
causes the entire file being written all over again. In partic-
ular, English Wikipedia (enwiki) clearly faced that problem.
Their last successful regular full-history dump was made on
January 2008; the next successful dump was started in Jan-
uary 2010 and took two months to complete [9]. Smaller pe-
dias are still doing quite well; apparently their O(N?) is not
out of bounds yet. As an extreme example, snapshot storage
is totally unacceptable for real-time version control, where
changes are introduced symbol by symbol, so the O(N?)
would be quite close to exactly N? of storage (1MB for 1KB
of text, 100MB for 10KB etc). An improvement over snap-
shots is delta-based storage. Delta storage keeps just some
versions of a file as snapshots, the rest being stored as a se-
quence of deltas. To recover a historical version, a number of
deltas should be applied to a snapshot. So far, this method
is the most popular in the SCM field. The git, for example,
nominally employs snapshot storage, but older revisions are
delta-compressed for storage efficiency. The third classic
storage format is the weave [26, 12]. A weave contains all
the pieces of a text that ever existed, in their natural order,
annotated with their birth and death “dates”. Given a cer-
tain revision id, a weave may be scanned, so all pieces alive
at that point in time will form the corresponding version of
the text. Weave is considered complex to implement; as a
file format, it also suffers of high input-output overhead [11]
as the entire weave has to be overwritten on every change.
As a consequence, it is not widely used as a storage for-
mat. Still, it is often used as an interim data structure by
algorithms merging concurrently introduced changes.

The storage method is closely connected to the evolution
model a RCS implements. The simplest model is a linear
sequence of revisions; this is the case of Wikipedia. Even the
most antiquated RCSes use the branching model: the his-
tory is seen as a tree, where branches are eventually forked
or merged back into the trunk. Distributed revision control
takes branching to the limit; the history is seen as a directed
acyclic graph; every change is potentially a fork. Mass mi-
gration to non-linear development and DRCSes is the most
notable trend of past years. Linux is developed with the
git, Google Code adopted Mercurial [7], and numerous open
source projects head in the same direction, migrating from
legacy CVS or Subversion. The advantage of DRCS is the

ability to routinely and continuously fork and merge back
numerous semi-independent versions of a project. Techni-
cally, DRCS sees every repository as an independent peer,
keeping the entire project’s history. The symmetric archi-
tecture minimizes network roundtrips, has no single point
of failure or contention. On the social side, it facilitates de-
centralization as well. Fundamentally, it allows for better
scalability of software development: more people doing more
things at once, without causing chaos.

Last but not least cornerstone of RCS design is the change
serialization and propagation format. FEarlier centralized
RCSes (SCCS, MS SourceSafe) employed locking to ensure
exclusive access to any given file. That made change serial-
ization trivial: it was sufficient to mention inserted /removed
parts and their positions in the text. But locking did not
scale well, so later systems (CVS, Subversion) switched to
optimistic merge of non-conflicting concurrent changes. For
the cases of no RCS, there was a practice of changesets,
maintained and distributed as patches [14] in parallel with
the main “upstream” codebase. These practices boosted the
use of revision control for communication, in addition to
archival. In the presence of concurrent changes, the prob-
lem of change serialization became less trivial. The classic
patch utility employs a set of heuristics and combinatorial
algorithms to apply changes properly; positions are always
considered as approximate [13, 23], every change is shipped
with its context, i.e. chunks of unchanged text before and
after the changed area.

2.1 Operational Transformation

Emergence of real-time groupware demanded new meth-
ods of change serialization. An earlier example is Google
Docs, which used the classic revision control techniques [5],
such as patches [13] and Meyer’s diff [34]; it just invoked
those operations more often, automatically. The Google
Wave project employed a new truly real-time approach de-
rived from the previous academic work [37] on Operational
Transformation (OT). Apparently, Google Docs have also
switched to OT recently [9]. OT starts with the same model
as the classical revision control techniques: a text is a chain
of atoms, any changes are represented as insert or remove
operations at certain positions in the text. The problem is,
once editing is done concurrently, those operations cannot
be integrated easily. The position numbering depends on
previous changes and once some previous changes are con-
current and thus unknown, position numbers become incon-
sistent. The OT approach applies transformations to the
mutation operations to amend the position numbers and
to integrate concurrent changes consistently. The OT the-
ory [41] mentions three basic consistency requirements, also
known as the CCI model:

e causally dependent operations are always executed in
their cause-effect order (causality preservation)

e all sites converge to the same state of text once they
execute the same set of operations, independently of
their order of arrival, which may vary due to concur-
rency (convergence)

e the effect of executing an operation is always the orig-
inally intended effect; position shifts must not cause
misapplication of operations (intention preservation)

The only problem of OT theory is, informally, its legendary
complexity, approaching that of the string theory. Very



similarly, there are numerous classes of OT flavors [8]. The
source of OT complexity is the entangled web of interdepen-
dencies between operations, especially those concurrently
introduced. Several OT models were later found to be in-
consistent; e.g. see [27, 39] for an observation of the TP2
puzzle story. The relatively recent SDT flavor is believed
to be consistent even in peer-to-peer environments; in [29]
authors reference “a 12-page formal correctness proof” of
the fact; the detailed description of SDT is 59 pages [30].
Indeed, once we allow non-realtime/offline functioning, lots
of concurrency and absence of any central coordinating en-
tity, the combinatorics of OT becomes extremely poor (see
Sec. 6.1). Many OT flavors resort to a single central author-
ity to merge concurrent changes in a single consistent way;
the most notable example is Google Wave’s OT [4].

2.2 Obsolete assumptions

At this point, it makes sense to reconsider basic assump-
tions that shaped the classic technologies of revision con-
trol, as those assumptions seem weak in the present circum-
stances. First of all, that atoms are necessarily addressed by
their positions in a text. The method introduces numerous
unpleasant consequences, as position numbers in a changing
text are very unreliable. Historically, unique symbol/line
identifiers were considered too complex or too expensive, al-
beit some recent proposals involve them [39, 45]. Second
classic assumption to be questioned is the separation of a
revision control program from an editor program, so the for-
mer only accesses snapshots of the text made by the latter.
The revision control program is supposed to run the longest
common subsequence algorithm [31] to recover what actually
happened to the text. This unfortunate loss of knowledge in-
between two applications is avoided by Web-based real-time
editing applications, as they instantly know every keystroke
made by the user. It is likely to be avoidable in many other
cases; e.g. once revision control code is easily embeddable.
The third assumption is the line-based tracking of changes.
Single symbols lacked unique “identity” to be used as atoms.
Also, finer-grained atoms increased the running time of key
algorithms that had super-linear complexity. But, once we
move from plain text and source code to richer formats, “a
line” is no longer natural nor convenient. If small changes
are prevalent, which is the case with real-time systems, line-
based tracking inflates overhead. The “old” Google Docs,
for example, worked with symbol-atoms, possibly using line-
atoms as an optimization.

3. ADAPTATION

Back to the objective of adapting advanced version con-
trol technology to the Web, let’s consider the requirements
and the corresponding problems of the current technologies
(Sec. 3.1). In the same Section, I will outline the proposed
solutions. In Sec. 3.2, I will introduce three basic data struc-
tures used in this work: a variant of weave, a variant of vec-
tor timestamp (weft), and a kind of operation log (yarn).
Data structures are string-based, processed with regular ex-
pressions (i.e. stackless algorithms). That guarantees they
are simple in the very formal sense. In Sec. 3.3, I address the
case of concurrent changes and prove the CCI correctness.

3.1 Requirements

First of all, revision control is normally implemented in
complex standalone software. Although there are JavaScript

implementations of basic algorithms such as Fraser’s diff-
match-patch [5], those are heavyweight heuristic-rich com-
binatorial algorithms and, frankly, better be optimized out
completely. I will target a set of version control algorithms
entirely implementable in linear-complexity regular expres-
sions without any combinatorial part.

Second, to exclude position-dependent logic and to allow
for truly real-time revision control, I will represent all muta-
tions at per-symbol granularity, each symbol being uniquely
identified. Such “symbols with identity” are named atoms.

Third, the problem of merging concurrent changes must
be resolved in a simple automatic way, without any user in-
tervention. Definitely, semantically correct merge of changes
is impossible in principle; semantically correct concurrent
changes, being merged cleanly in the technical sense, still
may produce a semantically incorrect result. There are no
way to prevent that from happening, apart from employing
some sort of artificial intelligence. Thus, real-world RCSes
focus on technically correct merge, resorting to human inter-
vention in case some heuristics detect a dangerous situation
(e.g. concurrent changes to the same line). We will focus
on technically correct and predictable way of merging, ad-
ditionally emphasizing the convergence requirement.

Fourth, versioned data formats tend to be quite complex.
We will use string-based formats, composed of equal-width
fields; those are effectively arrays of tuples. Strings and
regular expressions belong to the standard toolkit of ev-
ery high-level language (except probably Erlang); they are
highly-optimized and work at nearly-native speeds at worst.
In some browsers [16, 32], regexes are directly compiled into
machine code.

3.2 Data structures

Our basic data structure will be a yarn', an append-only
sequence of atoms (i.e. symbols) introduced to a single page
by a single author. A yarn is identified by its URL. Every
symbol-atom in a yarn is identified with its offset, denoted
with a single Unicode char. “Our” yarn is our reference
point; other yarns belong to other authors. Thus our yarn
has an associated reference frame, which is an append-only
list of peer yarn URLs. The first entry on the list is “our”
yarn URL. Each peer yarn is thus identified by its offset
in the frame list, also denoted with a single Unicode char.
Thus, a full identifier of an atom consists of two chars: one
char for its yarn, another for its offset within the yarn. An
identifier is only effective within its frame. So, at this point
we may use three forms of tuples to encode an atom. The
simplest 1-form contains the actual character only, e.g. “T”
in Fig. 1. The 2-form contains its id, i.e. the yarn and the
offset: “al”. The 3-form contains both the character and
the id: “Tal”.

Single symbols are linked into a text through the causality
relation. A symbol is said to be caused by its preceding
symbol at the time of insertion. This adds three other forms:
5-form (the symbol, its own id, its causing id), 3c-form (the
symbol and the causing id) and 5c-form (the same as 5-
form, but the causing atom id goes first). Further on, all
data structure names will be postfixed with the form they

In this discipline, many classic terms, such as patch, weave
or string, have textile connotations. Thus, I introduce terms
“yarn” and “weft” in accordance with the tradition. A con-
fused reader may substitute that for “user’s contributed
symbols vector” and “Fidgean vector timestamp” resp.
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Figure 1: Yarns, wefts and weaves: Alice writes
“Test”, Bob corrects to “Text”, Alice saves the state.
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Figure 2: Weft-weave-text correspondence for Fig. 1
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Figure 3: Different forms for the “x” atom of Fig. 1;
b2 is the atom’s id (feed b, offset 2), a2 is the id of
the causing atom (the “e”).
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Figure 4: Full weave5c for Fig. 1 (“x” is underlined).

use, e.g. yarn3c or atombc, see Fig. 3.

The second basic data structure is a weft, which is ef-
fectively a revision’s identifier. A weft2 consists of (yarn
id; last symbol id) pairs, and points at the revision when
those yarns were that long. In some sense, a weft is drawn
across the yarns, hence the name. Wefts are essentially vec-
tor timestamps, see Sec. 6.4. A closed weft is a weft sub-
jected to transitive closure, i.e. inclusion of all the recursive
dependencies caused by yarn-to-yarn references. The weftI
format is more condensed (see Fig. 2). It only includes the
last symbol ids, sorted according to the alphanumeric order-
ing of their yarn URLs. weftI is introduced because its al-
phanumeric ordering has certain nice features (see Sec. 3.3).

The causality relation forms a tree of atoms (see Fig. 1).
To give that tree a simpler single-root form we define zero
state of any text to consist of two special symbols: start (the
root) and end, designated as 3 and . Any actual symbols
are between those two. In case a text was uninterruptedly
typed, its causal tree degenerates into a mostly-chain, ex-
cept for the ¢ symbol. In either case, depth-first preorder
traversal of the tree produces the text. A closed weft cuts a

rooted subtree out of the whole tree; that subtree represents
a revision. A causal tree grows in a very natural way, by
forking and growing branches. To represent atom deletion in
the same fork-and-grow way, deleted atoms are not removed
from the tree, but followed by backspace atoms, designated
as ®@. Undeletion is similarly expressed by a special atom ®,
see Sec. 4.6 for in-depth discussion of deletion/undeletion.
Another special atom @ does nothing but signal awareness,
i.e. that the author was aware of the causing atom. When
Alice of Fig. 1 saves Bob’s edits, that technically means she
signals awareness of the last atom Bob introduced.

The third basic data structure we use is the aforemen-
tioned weave, normally weave5c, which consists of all the
symbols that ever existed, in order. Past or present revi-
sions of a text are derived from its weave given a weft (see
Fig. 2). All special symbols are included into the weave,
but they are never shown in the resulting text, hence they
cannot cause any atoms, with two exceptions: (1) ¥ causes
atoms that are inserted in the beginning of the text and
(2) @ could be caused by anything. All modifications and
transformations of a weave are done by regular expressions,
while those regular expressions are often produced by other
regular expressions. The intricate dynamics of the process
is considered in greater detail in the Section 4.

3.3 Ordering of siblings

Causality creates a partial order, so it cannot order atoms
totally into a text. Namely, it omits ordering of siblings; in
case two symbols were inserted after the same parent sym-
bol, their causal order is undefined. For example, the “T” at
Fig. 1 is a child to 3 and a sibling to ¢, but the order has
to be “3%T..2", not “3%3T..”. Let’s define a specialization
of the causal ordering to resolve the issue.

An atom a is aware of atom b if a is caused by b or a
appears later in the same yarn as b or there is a chain of
those two relations connecting a to b through some interme-
diary atoms. Informally, awareness means that at the time
of insertion the author of a knew b existed. Each atom is
aware of some (rooted) causal subtree, which is effectively
a revision; that subtree may be described by a weft; let’s
name it awareness weft of the atom. The awareness relation
is irreflexive, asymmetric, transitive.

The awareness order is defined as a preorder depth-first
traversal of the causal tree, where aware (i.e. yonger) sib-
lings are traversed first, e.g. the first symbol of the text goes
before ¢». In many cases, awareness should be manifested
manually. Suppose, an author is inserting a symbol a after
a symbol b which already has a child ¢, and the author’s
awareness of ¢ cannot be derived from the existing context.
Then, the author (effectively, the program) is supposed to
first insert @ after c¢ to signal awareness and thus to ensure
the correct order of siblings.

The resulting ordering is still partial, as the authors may
be unaware of each other doing concurrent changes, so the
awareness relation still might be undefined for some sib-
lings. Thus, we finally introduce the total order which, if
introduced earlier, might have caused confusion. The weft
order assumes that all atoms are ordered in accordance with
depth-first preorder traversal of the causal tree, while sib-
lings are traversed in the descending alphanumeric order of
their awareness weftI. This is a specialization of the aware-
ness order, because awareness is transitive and, correspond-
ingly, if a is aware of b, then weftI(a) > weftI(b). The



inequality is strict because two symbols cannot be aware of
each other (circular dependency), so their wefts surely differ.

While weft lengths may grow with the time as more au-
thors join, the relative alphanumeric order of two weftIs
never flips. If we compared two wefts at a moment when
their lengths were [, then the arrival of additional k coau-
thors will extend those wefts to the length of [ 4k chars. For
example, the weftI in the first line of Fig. 2 has a value of
“4” reflecting the edits made by Alice, but becomes “40” as
Bob joins. Still, the extension is done by inserting zero sym-
bols at exactly the same positions at every weftI. Thus, all
the newcomer’s positions in all the weftIs would have equal
zero values, so they will not affect the ordering. Relativis-
tic effects are prevented by the fact that awareness weftI
does not depend on the observer. Hence, the awareness weft
order is the same for all observers and never flips.

LEMMA 1. CCI holds for causal trees.

PRrROOF. Any changes to the text are expressed as new
branches of the causal tree; any concurrent changes (i.e.
branches) are unambiguously merged and the resulting text
is defined by the causal/awareness/weft order. Let’s go
through the CCI requirements. First, the causality preserva-
tion is achieved by adding changes in their awareness order.
Once a cause of an atom is unknown, neither the atom, nor
the rest of the yarn should not (could not) be processed.
Second, the convergence is clear, because given the same set
of atoms, peers will order them the same way, according
to the awareness weft order. Thus, they will converge to
the same state of the text. Third, intention preservation is
achieved by precisely identifying the place of application for
every atomic operation, so it can not be misapplied. []

The described formal system is based on simple definitions
and, in most cases, it is easily implementable with regular
expressions. For example, an operation of removing every
symbol followed by a backspace is just trivial. That cannot
be said about the ordering of unaware siblings; that case
consumes some effort (see Sec. 4.4). The situation of two
symbols being concurrently inserted at the same position in
the text might not be that typical. Still, it is important
to hold the convergence requirement without any resort to
central coordinating entities. To ease the implementation of
that case, I will prove a small lemma. It will also shed more
light on the correspondence between the causal order and
the order of atoms in a weave. Note that a causal subtree
occupies a solid interval in the weave; that is just a feature
of depth-first traversal. Let’s call it a causal block, C(r). A
causal block starts with r, the root atom of the subtree; the
rest is a sequence of zero or more causal blocks of the root’s
children. How will we locate the end of a causal block?

LEMMA 2. For r # 3%, C(r) = [r,b), where b is the first
atom, whose parent is not r but an atom r is aware of.

PROOF. b is the first element to the right from the causal
block of r; b surely exists. Parent of b is an atom p, which
resides in the weave somewhere to the left from b. p ¢ [r,b),
because otherwise b would also belong to the causal block of
r, contradiction. Then, p is to the left from r. Consequently,
r € C(p), because causal blocks are solid intervals and both
p and b belong to C(p). All atoms within a causal block
are immediately or transitively caused by its root, ergo r
is aware of p. At the same time, no atom within C(r) has
a parent r is aware of, unless that parent is r, because r
cannot be aware of the atoms it caused. []

yarn3c

tail-cut

text3h

Figure 5: Causal model formats and operations.

4. IMPLEMENTATION

Low-level programming languages, such as C, allow to im-
plement the causal trees (CT) model directly, according to
the definitions. High-level languages, such as JavaScript,
will have problems processing a causal tree where every char-
acter is an object. That necessitates the regex implemen-
tation. Implementing the CT model in regular expressions
consumes some effort; fluency in Perl-compatible regular ex-
pression dialect (PCRE) is of great help when reading this
Section. The number of formats and transformations em-
ployed in the causal tree model is quite high (see Fig. 5);
but, most of transformations are implemented with a cou-
ple of regular expressions. For easier narration, this section
will describe a typical workflow loosely based on the collab-
orative text authoring by several users. The algorithms are
independent of the number of users, their topology of inter-
action (be it server-based “star” or peer-to-peer “mesh”) or
round-trip time (be it real-time or monthly sync).

Weave-text-patch-weave is the main working cycle. A user
edits the text, the change is serialized as a patch, the patch
is integrated into the weaves of all the users.

4.1 Scouring (weave to text)

The central format of the model is weave5c. A weave
might be transformed into text3 by scouring: clearing weave
of all the deleted atoms (immediately followed by a &) and
all the special symbols:

s/ @\2. )+ [@e] {431 () .. (..)/$485/g

Out of the atom’s 5c-form, only the symbol and its id are
taken, thus the output is a 3-form. This regex is simplified
for the ease of understanding; it ignores undeletions (see
Sec. 4.6). The resulting text3 might be trivially stringified
into textl, i.e. the text itself: s/(.)../$1/g.

4.2 Diffing (text to patch)

The text is then put into the editor; the user makes some
changes. Those changes might be tracked either by listening
to basic events or by comparing text snapshots using diff
and/or heuristics. The result is a chain of patch1 substrings
corresponding to inserted and removed spans of the text;
their offsets in the original text are known. That allows to
check text3 for atom ids corresponding to the change: either
attachment points for insertions or sets of removed ids for
deletions. Then, we may spin patch3 and braid a patchbc,
which contains the inserted atoms in their full 5c-form.



4.3 Patching (patch to weave)

The patchbc is then distributed to other users. Once it
arrives, it should be integrated into their weaves. First, it
is split into causal blocks; one block is typically a causal
chain of atoms corresponding to a period of uninterrupted
typing. A block has a single attachment point in the causal
tree and might be inserted into the weave as a substring. Its
insertion point is just after the causing atom of the block’s
head/root atom, unless there is the case of unaware siblings
which is addressed in Sec. 4.4. Here I'll only add a safeguard
by checking that the head atom is aware of the current right
neighbor of its causing atom:
s/~ ((7: . {6 *?7) (...$C([@®]$C..)*) (?=...($F))/$1$28P/
This regex clearly needs explanation. First of all, the regex
is anchored to the beginning of the string to ensure it al-
ways matches with x5 offset and never across 5-form’s atom
boundaries. Second, symbols @ and ® are supposed to fol-
low their causes, see Sec. 4.6 for explanation. Third, the
regex includes three variables: $C, $F and $P. $C is the
atom id of the head’s causing atom; $P is the inserted block;
$F is an awareness filtre of the head atom. Filtre stands
for “filtering regex”; filtres are produced from a weft2 by
another regex, e.g. filtre('a2b4') = 'a[0-2]|b[0-4]"'.
A filtre matches two-char atom ids that fall within the
causal subtree cut by the weft2. Another common use
for filtre is to obtain a historical revision of a weave:
s/(...($F))|.{5}/$1/g, which in turn may be scoured to get
a historical revision of the text. In the case of patching, we
produce a filtre out of the head symbol’s awareness weft2
just to ensure the author of the head symbol was aware of
the symbol to the right (no unaware siblings).

4.4 Patching with unaware siblings

Well, what if unaware siblings are introduced by other
users, so the first method of patching fails? This is ex-
actly the situation to apply Lemma 2. We single out the
causal block of the heads’s causing symbol, then we split
it into causal blocks of the head’s siblings, then we insert
our block between its sibling causal blocks, according to the
weftI ordering (see Sec. 3.3). The implementation of this
case is less straightforward. While still relying on regular
expressions, it involves some “manual” work and, most im-
portantly, the costly operation of pulling (awareness weft
derivation), which does several passes of the weave (see
Sec. 4.5). The assumption is that concurrent insertion of
symbols at the same position in the text is a rare event, so
this non-trivial machinery will be invoked “once a year”.
Note that the simpler no-unaware-siblings patching algo-
rithm employs awareness wefts as well. Luckily, in that case
wefts might be cached and incrementally updated without
costly recalculation, due to append-only nature of yarns.

4.5 Pulling awareness wefts

The operation of pulling derives an awareness weft of an
atom. As an atom id is a trivial weft2, pulling might be
seen as transitive closure of the awareness relation. Tech-
nically, pulling is a cycle of (a) extracting all atoms from a
weave that fall under a weft and (b) using their ids to build
the next iteration of the weft. A string of concatenated ids
is technically a weft2, but it has lots of redundancy. Such
watery wefts are dried into non-redundant form by a reverse
filtre that matches everything but the latest id in every yarn:
revfiltre('aladb2') = 'a["1-w]lal["4-o] |D["2-0]"'.

Once two consecutive iterations produce the same weft, the
closure has converged. Making numerous passes of the com-
plete weave might be costly, so pulling is done using a con-
densed form of a weave named deps4. It only contains atoms
that reference other yarns, because same-yarn causality re-
lations do not affect the result of pulling.

4.6 Scouring (with undo and shortcuts)

The undo function boils down to deleting all insertions
and cancelling all deletions that happened after some recent
weft. The cancelling is done by the ® symbol, which is
a “deletion for deletions”; ® recovers its causing symbol,
by cancelling all deletions it is aware of. The introduction
of the symbol is mostly a technical optimization to allow
for bulk processing of deletions and undeletions. Differently
from insertions, @ and ® do not form causal chains naturally
and processing a thousand of @ one by one might be time-
consuming. In general, the regex implementation employs
several shortcuts to improve performance. It is good as long
as the final result (the text) matches the definitions of Sec. 3.
Special symbols are most heavily “shortcut” as they do not
show up in the resulting text. As an extreme example, @ does
not affect any operation but the pulling, and pulling does not
depend on atom order. Just to get @’s out of the way, they
are appended after . All @ and ® stick to their causes
as (a) they interact with their cause only, (b) they cause
nothing but @ and (c¢) their precise order is irrelevant. All
® prepend every ®& they cancel; thus, a weave5c might have
several copies of a single ®, in case it cancelled multiple
@. Another bulk-processing shortcut is that under certain
conditions spans of @ and ® may share the same id. As we
may see, the difference between theory and practice truly
exists in practice. Thus, the full scouring regex is:

s/ {5} (?: (7:®.{4D)+@.{4})*@. {4} (?: [@®] . {4}) * |\

.0.0. (7: [@em] . {4 *1 (L) .. (..) (7: [@a®] . {4})*/$182/g
Quite nicely, it now lacks backreferences and thus friendly
to DFA/NFA-based regex engines [18].

4.7 Advanced operations

So, we went through the full cycle: from a weave to a text
to a patch and back to the weave. Other operations are less
critical for the understanding of the model. For example, the
operation of dyeing derives a text3h, which is a “painted”
text in a special 3-form showing the difference between two
revisions. Namely, instead of the standard (yarn id; symbol
id) pair, a symbol is followed by a pair of yarn ids: one
for a yarn that inserted that atom, another for a yarn that
removed that atom. If no such change happened between
the two revisions, then id is null. The text3h string may
then be transformed into highlighted text or HTML.

A solid slice of RCS functionality is dealing with branches,
i.e. parallel versions of the same text/source. In a causal
tree, a branch in the RCS sense corresponds to (literally)
a set of branches. Those branches may be attached or
detached on request. Storage-wise, branches might be ei-
ther tails of certain yarns cut off by a weft or entire spe-
cial yarns. Branches may host parts of a text with spe-
cial access rights, overlay modifications (notes, annotations,
bubbles/balloons), pending/discussed draft modifications or
just scratchpad remarks. As long as the point of attachment
still exists in the text, a branch might be cleanly attached.
Otherwise, it is attached “uncleanly” into approximately the
same place. Differently from the diff-patch paradigm, the



process does not depend on mutations of the context, de-
mands no heuristics, combinatorics or manual intervention.
Changes are detachable and, generally, more manageable,
as CT tracks each symbol’s origins and dependencies.

Symbol-precise addressing also opens the possibility of
deep linking, i.e. referencing particular ranges in a chang-
ing text or particular versions of the text, or both. Very
much like in a spreadsheet, we identify each symbol with its
yarn and offset. Two identifiers specify a range which with-
stands document mutations; e.g. the [a2:a4) range at Fig. 1
first corresponds to “es”, then to “ex” (or, more precisely,
“exes®@”). That empowers both linking and transclusion, up
to the possibility of Excel-like referencing of text ranges.

To summarize, the model now implements all the basic
functions of a revision control system in a simple, portable
and truly decentralized way.

S. ESTIMATIONS

Once basic data structures and algorithms of the model
are explained, it is time to consider practical feasibility of the
introduced model. It is definitely impossible to foresee every
difficulty implementors may face, so this section will focus
on fundamental limitations introduced by the model itself.
Section 5.1 addresses the limits of the atom format. Section
5.2 analyzes weave size evolution in time, using Wikipedia
articles as reference data. Section 5.3 discusses input-output
(I/O) patterns of data structures used. Section 5.4 applies
the CT model to hierarchically structured text.

5.1 Limits of atom-based formats

First source of risk is the CPU time necessary to process
such a fine grained change/history format. With regular ex-
pressions, all the operations listed in Section 4 run in negligi-
ble time even on bigger texts. If ran within a browser, O(N)
regular expression passes a 1MB string in around a millisec-
ond. The patching operation for the case of unaware siblings
may take more time, let it be 100ms, but it is supposed to
be a rare “once a year” case. The overall computational
cost of assembling a weave from source yarns using regexes
is O(N?), i.e. a combinatory explosion is possible, unless
the weave is cached. In the latter case, O(N?) accumulates
historically, over the years of the text’s lifetime.

Another risky trick is using Unicode chars as, essentially,
numbers. In fact, common regular expression engines reli-
ably support only the first 50,000 code points or, more pre-
cisely, the [U+0,U+D800) interval. In case a single author
generates more than 50K of symbols, that author should
be assigned an additional yarn id. In total, the capacity
of this numbering system limits text size to 2,5 x 10° sym-
bols, which is more than enough; three volumes of “War and
Peace” in Russian take less than 0.1% of that, 2,56MB in
UTF-8. The 50,000 code points limitation also limits the
number of yarns and, correspondingly, coauthors of a sin-
gle document. Practically, it is hardly a problem, as even
the most popular project, namely Wikipedia, has only three
articles with an author count above 2'°: the Introduction,
the Sandbox and the Archive of the Sandbox, i.e. pages
every new user predictably bumps into. Excluding the exer-
cise, complaint and similar pages, the topmost “real” page
has an author count of 13680 as of the 2009-08-16 snapshot.
That is the “George W. Bush” article and the reasons for
the high author count are likely to be similar to the Sand-
box case. In case CT will be used for crowdsourcing a world
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Figure 6: Weave size evolution experiments.

article snapsh. .87 .7z | weavebc | textl git
Coca-Cola | 254Mb | 78.4Mb | 482Kb | 1.13Ma | 52Kc | 9.25Mb
J. Stalin 754Mb | 281Mb | 891Kb 1.38Ma | 137Kc | 10.6Mb
Goulash 2.2Mb 45Kb | 26Kb 46Ka | 8.6Kc | 348Kb
Animal | 69.9Mb | 1.1Mb | 252Kb 254Ka | 28Kc | 3.45Mb
2007 609Mb | 191Mb | 782Kb 967Ka | 122Kc 10Mb

Figure 7: Space consumed by full-history storage in
misc formats; postfix “b” stands for bytes, “c” for
Unicode chars (1-2 bytes, depending on charset and
encoding), “a” for 5-form atoms (5-10 bytes).

population census or similar purpose, there are three possi-
ble workarounds: (a) use two Unicode chars instead of one;
(b) use regex engines that support 232 character range or (c)
split giant texts into smaller texts or sections (see Sec. 5.4).

5.2 Weave growth

The size of a text is not of big concern, as texts are small
in general: the mass of Web traffic is dominated by images,
not to mention video content. The entire Web in text-only
indexed form fits into a single NAS server [9]. What actually
makes web search companies to build giant facilities is the
volume of simultaneous search requests. But a weave holds
the entire text’s mutation history, so it may be substantially
bigger than the plain text itself. Although, for practical ev-
eryday use, full weaves are not necessary, as the user is more
likely to be interested in the changes since the last visit, not
the full mutation history. Thus, some distilled version of a
weave may be used, long-dead parts being filtred out. An-
other general consideration is that the amount of processed
information (think of the Web) tends to grow exponentially.
Due to [ e““dz ~ e, the mass of the last revision is likely
to differ from the mass of the full history (i.e. weave) just
by some factor (which might be big). As the saying goes,
“devil is in the details”, so let’s consider the actual numbers.

To estimate growth dynamics and overhead of a weave,
I plotted weave size evolution for five Wikipedia articles
of different types (see Fig. 6), using the January 2008 en-
wiki dump. The articles used were “Coca-Cola” (popular),
“Joseph Stalin” (popular, big, controversial), “Goulash” (ob-
scure), “Animal” (popular, term), “2007” (popular, big, year).
The first finding is that article evolution depends a lot on
the human factor, e.g. the “editorial pressure” keeping the
article size within bounds. The second finding was that the
rate of vandalism is fairly high. Vandalism had to be fil-



tered out as it arbitrarily inflates sizes of the weaves, e.g. if
the entire text is deleted and recovered back, or megabytes
of garbage are pasted into the article. Namely, all changes
that were rolled back within 20 revisions were not counted.
Fortunately, separating cases of vandalism and edit warring
from article refactoring and well-intentioned edits is out of
scope of this article. While the simple criteria left some van-
dalism undetected, it was good enough to see the trends.
During periods of unconstrained growth, weave size grows
(roughly) linearly with the number of edits, as well as the
article size. But, there is also editorial pressure that keeps
the article size within bounds. Sometimes, an article gets
refactored and even shrinks. What is relevant for us is the
general correspondence between space requirements of dif-
ferent full-history text storage formats. I have compared
six formats: bare snapshots, gzip and 7zip of snapshots,
weavebc, plain text of the last revision (no history) and a
git repository keeping the entire history (measured immedi-
ately after git gc, i.e. compression and garbage collection),
see Fig. 7. As a rule of thumb, full weave size may be es-
timated as x100 the plain text size. Mass of a pre-filtered
weave is likely be around text size times 5 or 10, depending
on charset/encoding, which factor is defined by the form-5
overhead. Interestingly enough, a gzip of snapshots is far
worse than an uncompressed weave. A 7zip archive is bet-
ter off, its main shortcoming being high CPU consumption.
It took around 20 seconds to 7-unzip some of the articles,
which makes the format suitable for backup purposes only.
As a conclusion, the space efficiency of weavebc as a ver-
sioned text format is comparable to the space efficiency of a
git repository storing the same page history. Thus, weavebc
is effective as a server-side versioned text format, although
vandalism better be cleared, as it may arbitrarily inflate the
overhead. For sending to the client side, a weave better be
prefiltered to keep only those changes of interest.

5.3 T1/O patterns

Finally, as we talk about data storage formats, it is def-
initely useful to consider their I/O patterns. A weave is
convenient for reading and processing, which is done in se-
quential passes. It is much less convenient for writing, as it
needs to be overwritten entirely after any modification. A
yarn is exactly the opposite: it is append-only, so writing
is cheap, while reading and weaving together many yarns is
both CPU and I/O consuming operation. In practical sce-
narios, combined solutions might be better. As an example,
consider the weave5c+patchbc+textl set. Read-only clients
may be served with text1. All ongoing modifications might
be appended to patchb5c, which thus acts as a write cache.
The weavebc, once read from the disk, should be immedi-
ately updated with the patch5c. Once patchbc becomes too
big, the weave might be overwritten with its current version,
patchbc is thus emptied. Other mixes are also possible, de-
pending on trade-offs. For native (non-regex) implementa-
tions, tradeoffs might be different; e.g. a weaveb5 might be
assembled from a set of yarn3c in log-linear time; as yarns
are append-only they are also perfectly cacheable, etc etc.

5.4 Sectioned model

The causal trees model exclusively considers plain text;
formatted text is often modeled as a tree structure, e.g.
HTML’s Document Object Model (DOM) [2]. T will sketchily

address this concern. > While DOM imposes hierarchical
structure on formatted text, the text per se was not histor-
ically considered hierarchical, except probably for its bigger
units, i.e. sections. Examples are LaTeX, the RFC text
format, the wikitext or even the early pre-DOM HTML:
the text is considered to be a flow of words and markup
elements, the only hierarchically structured parts are sec-
tions/subsections. Even browsers, as a matter of fact, start
parsing with the “tag soup” model, later applying heuristics
to transform it into an orderly tree.

Note the open possibility to handle units of text hierar-
chical structure (sections) separately. While each section
might be considered flat in the pre-DOM HTML sense, dif-
ferent sections might reference each other through transclu-
sion links thus forming a hierarchical structure. Each section
has its own weave. A weave is just a string, so the result-
ing data structure is simple enough. As a result, we have a
digraph of sections; that keeps the complexities of the doc-
ument’s hierarchy and revision control orthogonal. The sec-
tioned structure allows to preserve histories once a section
is moved within a document or even between documents.
With equal ease, it allows to prune old history once an ar-
ticle is refactored. Removed sections are still mentioned in
histories of their parent sections, so historical revisions of
the whole document can be recovered. At the same time,
long-dead parts do not clutter the weaves currently in use.
Last but not least, the sectioned structure allows to relax
the 50,000 authors limitation: a single section might not
have 50K symbols, not to mention authors.

Back to HTML, the correct XHTML structure cannot be
guaranteed when merging concurrent modifications. For ex-
ample, two overlapping tag ranges cannot be merged cor-
rectly in the general case, e.g. <i>Quick <b>brown</i> fox</b>.
On the other hand, now conflicts (the “tag soup”) are con-
strained to the less-important markup within sections.

6. RELATED WORK

The model itself, its data formats and algorithms are now
fully described, so we may compare them to the relevant
work in the field. Not to limit ourselves to feature-by-feature
comparisons, I will put the CT model into a broader context
to uncover similarities and dependencies that have a chance
of being useful or insightful.

6.1 Operational Transformation

The causal model fulfills three requirements of the OT
CCI correctness model (see Lemma 1). Compared to the
mainstream OT, the use of unique atom identifiers and or-
dering of atoms into a tree removed all the arcane complex-
ity of position-dependent operations and transformations.
That complexity was mostly caused by the relativistic na-
ture of distributed systems, where the perceived time and
order of events varies for different observers. Using rela-
tivistic analogies, the CT construct resembles the light cone
(aka Minkowski spacetime) approach to understanding order
and causality of events. Instead of reshuffling basic events
that happen at different times at different points in space,
as perceived by different observers, the CT model considers
the entire static geometric shape in spacetime. As a con-

2My understanding of what should and what should not be
done here is based on the experience of building a chain of
prototypes over the past years [24, 25, 15].



sequence, quite differently from operational transformation
schemes, causal trees absolutely lack the transformation as-
pect: atomic operations stay intact and interact in simple
predictable ways.

6.2 Post-OT schemes

The reliance on atom ids makes CT similar to the WOOT
transformationless OT scheme [39] that also abandons po-
sitional logic in favor of unique atom identification. While
WOQOT records both left and right neighbors of a newly in-
troduced atom, CT records just one (the “cause”). In some
situations, indeed, CT has to mention the second neighbor
using the @ atom, but that is an exception. WOOT avoided
using vector clocks, based on the assumption that the size of
a vector is proportional to the total number of participants.
But in the scope of a single page or a section the number of
editors is manageable. Vector clocks (wefts) also turn to be
quite handy as revision identifiers.

As well, CT has some similarities to another post-OT system
named Logoot [45]. Logoot’s list-identifiers can be compared
to concatenations of CT ids along the path from the root to
the atom. In CT, this structure is used implicitly. Logoot
takes some measures to avoid accumulation of tombstones
(i.e. deleted historical content). That is mostly caused
by its reliance on line-based granularity of change tracking,
which exaggerates the overhead of history-keeping, in case
small changes are prevalent. Tombstone avoidance is much
less relevant for symbol-based revision control. CT follows
the DRCS principle of each repository being an independent
peer hosting the entire known history. In this context, Lo-
goot’s history elimination is unacceptable.

Regex-based implementation is an absolutely unique feature
of CT, not ever attempted in OT or post-OT or any other
kind of revision control framework.

6.3 Xanadu

There are some parallels between CT and the historical
Xanadu hypertext model. The spirit of Xanadu is to keep
all the versions of all texts at the same time, by clearly sep-
arating the original input from the actual revisions of the
text [1]. A very similar approach is seen in causal trees:
primary input is put into yarns, while all the actual revi-
sions are subsequences of the weave. The Xanadu objectives
of “origin connection”, “side-side intercomparison”, “deep
version management” and “incremental publishing” are ad-
dressed in CT. Still, the implementation is very different.

6.4 Lamport-Fidge vector clocks

The causal tree model perfectly matches the entities of the
Lamport-Fidge [28, 22] vector /logical clocks model. Namely,
a yarn corresponds to a process, foreign causality relations
- to messages, yarn offsets to local logical clocks and wefts
to vector clocks. Awareness order follows the lines of Lam-
port’s synchronized logical timestamps. The weft order is
similar to Fidge’s vector clock ordering, but there are no
strict equivalence here. Interestingly, the Fidge-Lamport
model was inspired by the special theory of relativity. In
this article, we always observed a causal tree from a certain
frame of reference (see Sec. 3.2) centered at a certain yarn.

6.5 Distributed wikis

The first distributed wiki proposal was made by Ward
Cunningham, the original inventor of wikis [19]. Numerous

peer-to-peer/distributed /federated wiki proposals and pro-
totypes were made since [24, 20, 33, 17], but none crossed
the critical robustness/usability threshold to reach any no-
table acceptance. Probably, a simpler distributed revision
control technology will make some advance here.

Currently, Wikipedia faces scaling problems [38, 40]; na-
ture of those problems is quite complicated and cannot be
addressed in this article. Some research effort was put into
engineering a decentralized Wikipedia based on Distributed
Hash Tables (DHTs, [43]). That is merely a technical decen-
tralization that addresses possible funding shortages. An-
other side of the problem is social decentralization. How to
prevent turf wars and contributor alienation? Is it possible
to create multiple competing pedias? How could we possibly
test novel forms of contributor organization and incentiviza-
tion? Will the inclusionist approach work, i.e. could we use
Wikipedia for specialized knowledge? My honest belief is
that decent distributed revision control technology is abso-
lutely necessary just to start thinking about those questions.

Eventually, decentralized version control with easy fork-
ing and easy merge of branches may lead towards the vision
that Linus Torvalds has explained as “crosspollination and
natural selection” [42] in application to the Linux develop-
ment. Currently, those ideas are manifested in the design of
the git RCS. Unfortunately, the git is not Web-ready. It is
precisely fit for its current purpose and it was never intended
to run in a browser or to be simple enough, etc.

6.6 Google Wave

Google Wave relied on a flavor of Operational Transforma-
tion for real-time version control. The enhanced OT flavor
is supposed to handle both plain text and tree-like XML
DOM structures. Informally, the main problem of the re-
sulting technology is that its complexity is OT complexity
times XML complexity. The authors even had to enrich
XML with additional entities named “annotations” to make
it suitable for their needs. There are 15 sorts of different
mutation operations used in Wave OT, some as opaque as
“delete anti-element end” [4]. Theoretically, the potential
for unexpected feature interactions tends to grow combi-
natorially with the number of primitives. In practice, the
overcomplication resulted in numerous bugs and slow unre-
sponsive user interface [9]. According to an insider [10], in
6 months since the projects’s launch the possibility of work-
ing with partial histories is not implemented yet; pages are
bootstrapped with their complete histories.

7. CONCLUSION

The CT model makes five main contributions. First, it al-
lows to implement first-class real-time collaborative editing
in the browser (as in Google Docs). Second, it allows that
in a network of any topology, thus enabling highly decen-
tralized workflows (like in git). On the technical side, the
third contribution is a simple string-based versioned text
format and trivially portable regex-based algorithms. The
fourth contribution is the deep linking capability, enabling
Excel-like referencing for hypertext. The fifth contribution
is the deep hypertext capability with instant access to ev-
ery prior version of a document, per-character authorship
information, real-time difference between any two versions,
attaching/detaching of branches, etc. The value of the fifth
contribution is harder to estimate, as there is nothing yet to
compare it to.
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