
Semantic Search on Heterogeneous Wiki Systems∗

Fabrizio Orlandi
Digital Enterprise Research Institute

National University of Ireland, Galway
fabrizio.orlandi@deri.org

Alexandre Passant
Digital Enterprise Research Institute

National University of Ireland, Galway
alexandre.passant@deri.org

ABSTRACT
This paper describes a system to enable semantic search
across heterogeneous wikis in an unified way using Seman-
tic Web technologies. In particular, we discuss (i) how we
designed a common model for representing social and struc-
tural wiki features and (ii) how we extracted semantic data
from wikis using Mediawiki and Dokuwiki. On this basis,
we show how we built and efficient application with a sim-
ple user-interface enabling semantic searching and browsing
capabilities on the top of different interlinked wikis.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line In-
formation Services; H.5.3 [Information Interfaces and
Presentation]: Group and Organization Interfaces—Web-
based interaction; I.2.4 [Artificial Intelligence]: Knowl-
edge Representation Formalisms and Methods; K.4.3 [Com-
puters and Society]: Organizational Impacts—Computer-
supported collaborative work

General Terms
Human Factors, Documentation, Languages

Keywords
Semantic Web, SIOC, wikis, semantic search, MediaWiki,
Dokuwiki, Social Semantic Web, Linked Data

1. INTRODUCTION
Wikis are widely used both on the Web — with well-know

and popular systems such as Wikipedia or Wikitravel, as
well as wiki systems dedicated to open-source software man-
agement such as Trac1 — and in the workplace, for instance

∗The work presented in this paper is funded in part
by Science Foundation Ireland under grant number
SFI/08/CE/I1380 (Ĺıon 2).
1http://trac.edgewall.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym ’10, July 7-9, 2010, Gdańsk, Poland
Copyright 2010 ACM 978-1-4503-0056-8/10/07 ...$10.00.

for project management or customer relationships. In this
case, complete solutions such as SocialText Workspace2, in
addition to open-source systems, as MediaWiki3 can be used
for such purposes.

However, each wiki system relies on its own data struc-
ture and API to model its data and let developer access
its. Consequently, wikis act as isolated systems, where in-
formation from one system cannot be easily integrated with
information from another one. Practically, this introduce
several drawbacks when users need to access information
on the Web or in the enterprise. Let us for instance con-
sider the ACME company: its marketing department uses
a MediWiki-based system, its engineering team use Moin-
Moin4 and the sales are using DokuWiki5. Hence, in case
a user wants to retrieve all information about a particular
project, he has to separately query each wiki, which can be
time consuming. Similar issues happen on the Web, if for ex-
ample one wants to identify all the contribution of someone
across several wikis.

In this paper, we propose an approach based on Seman-
tic Web [5] technologies, Linked Data principles [4] and
lightweight ontologies to solve such issues and to enable
semantic search across heterogeneous wiki systems. Espe-
cially, our contributions include:

• a common model for representing wiki structure and
contributions in RDF — Resource Description Frame-
work — encompassing previous models in the area;

• various exporters for popular wiki systems, translating
wiki information in RDF annotations (based on the
previous models) in real-time, and

• a semantic search engine, built on the top of an RDF
store (enabling inference capabilities) and providing
means to retrieve information contained in originally
heterogeneous wikis in a novel and user-friendly way.

This paper is organized as follows. First, we will explore
the structure of the ontology we propose for representing
the social and structural features of wikis, also discussing
the current state of the art in the domain and how our con-
tribution relates to it. Second, we will detail the exporters
that we have built for different wiki systems (MediaWiki and
DokuWiki) and discuss how we collected data from these two

2http://www.socialtext.com/
3http://www.mediawiki.org/
4http://moinmo.in/
5http://www.dokuwiki.org/dokuwiki

platforms across five wiki sites. Then, in section 4 we will
detail how we built a system on the top of the data collected,
that allows cross-wikis querying and faceted browsing capa-
bilities. This applications is built on existing Semantic Web
querying standards (i.e. SPARQL) and uses PHP and the
MIT’s SIMILE Exhibit web interface. Finally, we will con-
clude the paper with a discussion on how Semantic Web can
enhance wikis through an overview of our future works on
the domain.

2. A UNIFIED ONTOLOGY FOR REPRE-
SENTING WIKIS STRUCTURE

As discussed in the introduction, different wiki systems
rely on different structures and APIs to represent their data.
However, they all aim at representing the same information
(at least a common subset), including main features of wikis
such as the list of pages of the system, versioning information
for each page, etc. Then, in order to enable interoperability
between wiki system, we design an lightweight ontology to
represent these characteristics equally whatever the original
system is. Ontologies are at the core of the Semantic Web
(a vision of the Web focused on data interoperability [5],
moving from a Web of documents to a Web of data6) and
provide“the explicit specification of a conceptualisation” [12],
i.e. a shared vision of a domain. Our work then fits in the
realm of Semantic Wikis, a vision integrating wiki philos-
ophy and Semantic Web technologies, and more generally
towards the Social Semantic Web [9], bringing together the
Semantic Web and the Social Web.

2.1 Related Work
We can generally distinguish two kind of semantic wikis:

(i) on the one hand, wikis using semantics to model the
content of pages themselves, i.e. modeling facts contained
inside wiki pages in RDF and (ii) on the other hand, wikis
using semantics to represent their structure and the social
interactions happening in wikis, enhance them using such
modeling. The two approaches can also be combined, so that
wikis would model both their content and their structure in
RDF, offering new ways to identify the contributors around
a particular fact, hence enabling advanced provenance man-
agement in wikis [21]. However, as we mainly focus on the
second aspect of semantic wikis in this paper, i.e. common
modeling of wiki structure, we will only focus on such wikis
in this state of the art as well as on other representation
models, developed independently of wiki platforms.

IkeWiki [22] uses a dedicated OWL ontology to represent
the wiki structure, modeling users and pages but not taking
into account features such as backlinks and versioning. It
also defines mappings with FOAF — Friend Of A Friend7

— and SIOC — Semantically-Interlinked Online Commu-
nities8 — for representing discussion pages. SweetWiki [11]
also has its own model, and takes versioning into account, as
well as categories. However, it does not support discussion
pages, and redefines its own classes for modeling authors
and wiki pages. In addition, Semantic MediaWiki (SMW,
a MediaWiki extension) [15] uses a particular ontology to

6For further information, the reader could refer to the W3C
FAQ on the topic — http://www.w3.org/RDF/FAQ
7A popular model to define people and social networks and
the Semantic Web
8We will detail it in the next subsection

represent the semantic data exported from a page by a user,
named SWIVT – Semantic Wiki Vocabulary and Terminol-
ogy but does not export all SMW features, including back-
links and categories.

Regarding generic models, we should mention WikiOnt
[13], an ontology9 for describing and exchanging wiki arti-
cles, aimed at integrating Wikipedia (and by extension other
MediaWiki-based sites) into the Semantic Web framework,
making Wikipedia machine-processable. It uses DublinCore
to identify multiple authors of wiki pages as well as the edit-
ing date, and provides Article and Category classes. In
addition, Wiki Interchange Format (WIF) [23] is a project
that allows data exchange between wikis and related tools
and tackles the problem of page content and annotations.
It defines a subset of XHTML as an over-the-wire format
for wiki content exchange, defining classes to model users
(mapped with FOAF) and pages, and providing a version-
ing system, but not considering categories, social tagging,
discussions and backlinks: features currently not modeled
by the ontology.

2.2 Our Proposal
Motivated by the previous heterogeneity of models to rep-

resent wiki structure, and as none of them integrates all as-
pects of wiki features, we designed an ontology for modeling
wikis on the Semantic Web. We built our model on the top
of the SIOC ontology10. SIOC — Semantically-Interlinked
Online Communities [8] — is now considered as one of the
building blocks of the Social Semantic Web, since it is used
in more than 50 applications, including Yahoo! SearchMon-
key11 and Drupal 712. Therefore, building on the top of it
allows exposure of our model in existing applications.

Typically wikis allow editing of documents and, by defi-
nition, allow multiple users to simultaneously contribute to
the content; they track history of changes so that pages can
be restored to previous modified versions; they include com-
ments or discussion areas; they link to other external sources
or within the wiki; they describe categories into hierarchical
structures. For each of these features, we will now detail
how we modeled it, using (and extending when needed) the
SIOC Core ontology13 and its Types module14.

2.2.1 Representing Wikis and their Pages
Natively, the SIOC Types module already defines the Wiki

and WikiArticle classes that can be used to represent the
basic objects manipulated by wikis, e.g. wikis and their
pages. We consequently reused these classes and added new
properties to model additional features, as we will now dis-
cuss.

2.2.2 Multi-authoring
A fundamental feature of wikis is that multiple users are

allowed to modify the same content, enabling some kind of
collective intelligence process. In this regard the semantic
infrastructure should provide a model to identify users and
theirs modifications, marking events with a corresponding

9http://sw.deri.org/2005/04/wikipedia/wikiont.html
10http://sioc-project.org
11http://developer.yahoo.com/searchmonkey/
12http://groups.drupal.org/node/16597
13http://rdfs.org/sioc/ns, prefix sioc
14http://rdfs.org/sioc/types, prefix sioct

timestamp so that provenance of information can be tracked
between two versions.

This can be achieved using (i) the sioc:UserAccount class,
representing a wiki user and (ii) the sioc:has_creator prop-
erty, linking the edited wiki page to this user. Since multiple
sioc:has_creator links can be linked to a single page, it en-
ables a support for multi-authoring. We will also see next
that this link is associated with the wiki version, in order to
track information changes. Furthermore, sioc:UserAccount
is defined as a subclass of foaf:OnlineAccount. In this way
a foaf:Person (i.e. a physical person) could be linked to
several sioc:UserAccount belonging to different wiki sites,
enabling integration of one user’s contributions across sys-
tems, a feature that we will also show in Section 4. Another
way to model the relationships between pages and their au-
thors is to reuse properties from the Dublin Core ontology,
i.e. dc:contributor (or dc:creator) and dcterms:created.
We actually distinguish between the creator of a version (via
sioc:has_creator) and the contributors (via dc:contributor)
who are the ones involved in previous version of the page,
a useful distinction especially for cross-querying as we will
detail in Section 4.1.

2.2.3 Categories
In many systems, wiki pages are generally related to cat-

egories, that allow readers to find sets of articles on related
topics. Categories can also be organized in a tree-like struc-
ture and their semantic model should mantain the original
taxonomical structure. In this regard an appropriate solu-
tion is provided by the SKOS15 vocabulary [17], as it offers
a way to model hierarchical structures between various cat-
egories, represented as instances of skos:Concept.

As regards the SIOC ontology, a sioct:Category class
was already present into the SIOC Types module. Yet, it
allowed only the modeling of a flat set of category names,
without relationships each other. Hence, we extended it to
declare this class as a subclass of a skos:Concept, giving
it the ability to use the wide SKOS ontology capabilities
to organize categories into advanced taxonomies, includ-
ing properties such as skos:broader, skos:narrower and
skos:related, enabling the modeling of hierarchies of cat-
egories. Moreover, thanks to the sioc:topic property, one
can link any wiki page to such category.

2.2.4 Social tagging
While not all wiki engines support that feature, we believe

this is particularly relevant, especially as it offers an open
and user-driven classification scheme for wiki pages. The
use of tags lead to a non-organised but dynamic organisa-
tion process, known as a “folksonomy”, rather than the more
widely used hierarchical structures.

The properties sioc:topic and dc:subject can be used
to represent tags related to a particular wiki page, either
using URIs for these tags (with sioc:topic) or simple key-
words (dc:subject). In addition, vocabularies such as the
Tag ontology [18], SCOT [14] or MOAT [20] allow to model
tagging as tripartite actions (between a wiki page, a user
and a tag) as well as organize tags together or link them to
ontology concepts, in order to solve common tagging issues
such as ambiguity between tags.

2.2.5 Discussions
15http://www.w3.org/2004/02/skos/

Several wikis associate a discussion page to every wiki
page, so that each user is able to comment and argue his
point-of-view on the topic. This is moreover a default feature
in MediaWiki, with a Talk page associated to each article.
On a discussion page, people can discuss about the article
subject, or about the way that subject is presented (see the
Wikipedia’s approach16). A first modeling solution could
be to simply keep the native wiki text format of the wiki
and just semantically link the discussion page to the related
article page.

The SIOC’s main class responsible for the modeling of a
discussion is the sioc:Forum class, but there could be other
specific classes that are more suitable for these discussion
purposes, as defined in the Types module. The appropriate
class to choose depends also on the type and style of the
discussion page so there is a need to identify a proper at-
tribute to link a wiki page to its discussion page. In this
regard we decided to add a sioc:has_discussion property
to the SIOC Core ontology, with domain sioc:Item and
open range. This choice has been done in order to make this
property reusable also in other contexts, for instance linking
a simple webpage to a discussion forum. The discussions
happening within the related sioc:Forum can then be mod-
eled either as wiki-style discussions or threaded ones, and
that feature also allows us to re-use advanced SIOC-based
argumentative discussion modeling as defined in [16].

2.2.6 Backlinks
Backlinks are an important feature of wikis, as they allow

to visualize instantaneously all the incoming links to a web-
site or web page. More precisely they are wiki internal links
pointing to a wiki article. It is a very common wiki feature
and they may be of significant interest: they indicate who
is paying attention to the linked page or topic.

We modeled this feature using the already existing sioc:

links_to property. This property identifies links extracted
from hyperlinks within a SIOC concept and is a subproperty
of dcterms:references. It is important to remember that
this property has to be defined into the RDF description of
the original wiki article which links back to the wiki article.
Hence, to model for instance that the Wikipedia page about
“DERI” features a backlink from the page about “RDF”, the
following statement would be added into the RDF descrip-
tion of DERI’s page17.

<http ://en.wikipedia.org/wiki/
Resource_Description_Framework > sioc:
links_to

<http ://en.wikipedia.org/wiki/
Digital_Enterprise_Research_Institute
> .

Listing 1: Representing wiki backlinks with SIOC

2.2.7 Versioning
Usually all editable pages on wikis have an associated page

history. This history consists of the old versions of the wiki-
text, as well as a record of the date and time of every edit,

16http://en.wikipedia.org/wiki/Wikipedia:Talk_page_
guidelines

17For space reasons, we did not include prefixes in listings
and queries of this paper.

the username or IP address of the user who wrote it, and
their edit summary. All this is usually accessible through a
special “history” page which shows time-ordered links to all
the revisions. Commonly the latest revision of a wiki page
has always the same URL (alias name), meanwhile older
versions have further parameters appended to the URL.

As we have seen, our model for multi-authorship allows
to represent the authors involved in a page at a particular
time. However, there is a need to link a page to its previous
version. This could be modeled in several ways. Considering
the existing versioning approaches from the state of the art,
we came to the conclusion that none completely fullfil its
needs and we thus designed a new versioning model. An
important requirement we took into account is to enable
fast and simple browsing capability using such model.

For this reason, we decided to use transitive properties to
express the temporal relations between revisions of a wiki
page. Transitive properties, defined as owl:TransitivePro-
perty18, enable, combined with an inference engine, to infer
new facts based on an initial seed fact. Then, we defined
two kind of properties to model versioning, the model being
displayed in Fig. 1:

• previous_version and next_version properties, link-
ing directly an instance of sioc:Item, or any subclass
such as sioct:WikiArticle to its previous (or next)
version, and

• earlier_version and later_version, defined as super-
properties of the previous ones and as transitive prop-
erties.

Using these definitions, the following rules are automati-
cally applied by a reasoning engine as soon as it gets a set
of wiki pages and of previous_version or next_version

properties in its dataset:

∀(x, y, z), previous version(x, y) u previous version(y, z) (1)

−→ earlier version(x, y) u earlier version(y, z) (2)

−→ earlier version(x, z) (3)

Hence, using an OWL level reasoning engine, when mod-
eling a WikiArticle (or a sioc:Item in general), it is only
necessary to describe its previous and next revision and the
transitive super-properties will be automatically inferred by
the system. This can also be convenient during the querying
process (described in Section 4.1): if one needs to get all the
earlier versions of a wiki page, we benefit from the transi-
tivity of sioc:earlier_version, while if not using this, we
would have had to be implemented a query that recursively
go through each sioc:previous_version of the latest wiki
article.

Another introduced property is the sioc:latest_version
which points always to the newest revision. Usually it is used
in combination with an alias name of the latest version so
that it is not necessary to change the referred URI in all
the earlier versions as soon as a modification happens. All
the wikis we analyzed adopt this solution as it addresses
scalability.

18http://www.w3.org/TR/owl-ref/
#TransitiveProperty-def

3. EXPORTING SIOC DATA FROM HETERO-
GENEOUS WIKIS

Once a common interchange model for wikis has been de-
fined, in order to evaluate our proposal, we decided to gen-
erate and collect a substantial amount of structured data in
RDF/XML format generated from different wiki platforms.
First, a webservice that exports every wiki page from the
MediaWiki software platform in RDF has been developed
(Section 3.1). This exporter is called “SIOC-MediaWiki ex-
porter” and it is publicly available on the Web. Our atten-
tion was focused on the MediaWiki platform simply because
it is one of the most popular wiki platforms on the Web,
hosting all the Wikimedia Fundation wikis (i.e. Wikipedia,
Wiktionary, etc.) and propulsing more that 45 millions of
wiki articles from different wiki sites19.

The second wiki platform we chose is DokuWiki20, which
is another popular wiki platform together with TWiki and
MoinMoin, aimed at small companies’ documentation needs
and particularly suited for fast and easy setups and con-
figurations since it does not need a database. We focused
on this wiki software also because a plug-in for DokuWiki
that exports RDF data, and especially SIOC ontology based
data, has been already developed by Michael Haschke21, a
contributor of the SIOC project’s community. However, it
was not fully-compliant with our proposed model and some
features we needed were missing, therefore we adapted and
improved this plug-in implementation in order to meet the
requirements we established (Section 3.2).

Exporting and collecting data extracted from two different
and relevant wiki platforms allows us to evaluate and demon-
strate the validity of our approach, and gives us the possi-
bility to run and experiment cross-wikis and cross-platforms
queries and to show some of the potentialities that Semantic
Web technologies could have, as we will show in Section 4.

3.1 The SIOC-MediaWiki exporter
The SIOC-MediaWiki webservice is written in PHP and is

publicly available at http://ws.sioc-project.org/mediawiki/.
It exports any MediaWiki wiki article in RDF using the
structure we explained in the previous sections. It is rel-
atively lightweight and built thanks to two PHP classes:
the SIOC-Mediawiki exporter itself and the already exist-
ing SIOC API22. The latter has been improved in order to
take the new characteristics of the model into account. The
exporter class is the part responsible for querying the Me-
diaWiki API and parsing the results, and the SIOC API
is responsible for exporting the content in RDF. The script
automatically discovers the MediaWiki API location of the
requested wiki, then it connects to the API with HTTP GET
requests as queries. After parsing the results of the queries
it calls the SIOC API to export in RDF/XML serialization
the fetched structural information.

Since the initial release of the exporter [19], we focused on
improving the performances of the application, especially in
terms of response time. This is a very important require-

19http://s23.org/wikistats/largest_html.php checked
on March 2010

20http://www.dokuwiki.org/
21http://eye48.com/dokuwiki/doku.php?id=en:
dokuwiki:sioc-plugin

22http://wiki.sioc-project.org/index.php/
PHPExportAPI

http://wikiexample.org/PageName

http://wikiexample.org/PageName_Vers_X

http://wikiexample.org/PageName_Vers_Y

http://wikiexample.org/PageName_Vers_Z

latest_version

earlier_version
previous_version

previous_version

previous_version

next_version

next_version

next_version

later_version

Figure 1: Pages versioning model with SIOC properties. Note that, for clarity, transitive properties ear-

lier_version and later_version are only displayed for two wiki articles: the latest one and the first one.

ment: considering the process of crawling a wiki using the
exporter, even a small reduction of the time needed to export
a single wiki page would lead to a consistent amount of time
saved when collecting data for all the pages in an entire wiki.
Unfortunately the exporting time with the SIOC-MediaWiki
webservice is strongly dependent on (i) the time of response
of the API of the original MediaWiki system that is exported
and (ii) on the number of queries needed to get all the data.
The second aspect on which we concentrated our attention
was the way users and anonymous users are modeled, in par-
ticular the anonymous users need to be modeled and they
can only be linked to a blank node. Finally the possibility
to finely select the relevant wiki structural features to ex-
port has been added. Then, users can decide to export only
some basic information on a wiki article and ignore other
information, for instance exporting revisions but no cate-
gories, instead of being always forced to export them all.
This enables better usage of the applications, as third-party
developers can concentrate on extracting only the required
subset of the original systems.

3.2 The DokuSIOC plugin for DokuWiki
The main functionalities offered by DokuWiki are exten-

sible by implementing plugins, called Action Plugins, which
are designed to work with DokuWiki events to allow for cus-
tomization of any part of DokuWiki that signals its activity
using events. The DokuWiki documentation23 gives detailed
information on their structure and how to develop new plu-
gins. In this section, we focus more on DokuSIOC, a plugin
developed by Michael Haschke24, and how we extended it
to fit with our SIOC extensions. Action plugins are loaded
before any significant DokuWiki processing takes place. At
load time they register their event handlers so that when
a specific event is signaled all event handlers registered for
that event are called. Hence plugins have the opportunity
to alter either the event data or the event’s subsequent pro-
cessing.

The DokuSIOC plugin takes information from the meta-
data stored in the wiki system about pages, users, links, and
revisions and provides it as raw RDF/XML serialized data
(instead of the usual HTML page) if asked for it. Futher-
more DokuSIOC provides several different ways to offer its

23http://www.dokuwiki.org/devel:action_plugins
24http://eye48.com/go/dokusioc

service to clients. Simple ways are simply to add the GET
parameter do=export_siocxml to the URL of a wiki page, or
to follow the meta link added to the header of the DokuWiki
HTML view. Another option is based on the content-negotiation
capability: if the client requests the usual URL of the page
with an HTTP header asking for application/rdf+xml, the
plugin will forward to the location of the RDF export view.
These options are particularly useful as regards the crawling
process of a DokuWiki wiki using a common RDF crawler
which can automatically discover the linked RDF data.

The semantic model used by the DokuSIOC plugin after
our modifications reflects exactly the model we detailed in
the previous sections and, of course the one used by the
SIOC-MediaWiki exporter. One of the problems encoun-
tered when developing this DokuWiki plugin relates to the
internal handling of user identifiers and profiles in it and
consequently how to model URI for users. In this case
the DokuSIOC plugin was already offering a way to con-
figure a DokuWiki namespace, where user identifiers can be
used as sub pages. The following URI structure http://

[dokuwikiurl]/doku.php?id=user:username provides the
identifier for the user account on the wiki. Moreover a
usual DokuWiki URL can stand for different resources, any
URL may describe either a user as a sioc:UserAccount or
a wiki page as a sioct:WikiArticle or a container (in this
case a specific sioct:Wiki wiki container is more appro-
priate). In this regard, the SIOC plugin adds a type pa-
rameter to distinguish exactly between the resources types.
Different URI structures are then used depending on the
context, e.g. http://[dokuwikiurl]/doku.php?id=user:

username&type=user for a user and http://[dokuwiki]/doku.

php?id=pageid&type=post for an article.
To generate RDF data out of the metadata extracted

from the wiki system and easily create SIOC documents,
DokuSIOC uses the SIOC PHP API25 that we have devel-
oped in the past. An important change we have made in
the plugin implementation has been to use the SIOC PHP
API as much as possible to create the SIOC objects such
as the sioct:WikiArticle, the sioct:Wiki container, the
sioc:UserAccount etc. In the previous implementation of
the plugin there was a PHP class that was acting as a me-
diator between the main Action class of the DokuWiki plu-

25http://wiki.sioc-project.org/index.php/
PHPExportAPI

gin and the sioc_inc.php script of the SIOC API. This
“intermediate” class was used to change and customize the
behavior of the SIOC API in order to create personalized
objects using the methods provided by the SIOC API. In
our perspective the SIOC API gives us all the instruments
and objects we need in order to have the same wiki mod-
eling between the different wiki platforms and to keep the
interoperability between them. Hence we decided to keep
the same structure we used for the SIOC-MediaWiki ex-
porter and relay on the SIOC API implementation26. In
particular our changes have been focused on the properties
used to define the contributors of the articles (we use the
sioc:has_creator to point to the sioc:UserAccount and
the dc:contributor for the username as literal), and the
date of creation of each article revision (with dcterms:created).
Furthermore we changed the way the backlinks were mod-
eled deciding to keep the same sioc:links_to property used
for forward links. This particular choice would ease the
querying part of our work because we have always the same
property expressing links between the articles, no matter if
they are back/forward or internal/external links.

Another relevant contribution we made to the DokuSIOC
plugin was to add the “external links” feature which was not
implemented. Indeed, DokuWiki does not provides native
metadata about the external links linked from each page.
Our exporter consequently parses all links from HTML ar-
ticles and extract the external ones. Once the extraction
has been made by the “Action” main class of the plugin, we
export them using the same criteria as the internal links.

3.3 Following the Linked Data Principles
The main goal of our work with the implementation of

two different exporters sharing the same data model was not
only to create RDF data from any MediaWiki or DokuWiki
page, but also to easily allow interlinking between various
wiki platforms, as well as between wiki data and other RDF
data, whatever it is social data modeled with FOAF or
SIOC or any other kind of RDF data. To do so, we fol-
lowed the Linked Data principles defined by [4] and the re-
lated best practices [3] [6]: (i) use URIs as names for things;
(ii) use HTTP URIs so that people can look up those names;
(iii) when someone looks up a URI, provide useful informa-
tion, using the standards (RDF, SPARQL); (iv) include links
to other URIs. so that they can discover more things.

Particularly, to offer a better browsing experience and
ease the process of crawling SIOC exports of MediaWiki in-
stances, our webservice automatically produces rdfs:seeAlso
links between wiki pages. Actually, more than a simple link
to the wiki page, the exporter provides a link to the related
RDF document, as we can see in Listing 2 related to the
export of a particular sioc:UserAccount. As we can also
notice in that example, we distinguish the concept itself (i.e.
User:StefanDecker) and the related RDF page.

<sioc:UserAccount rdf:about="http ://en.
wikipedia.org/wiki/User:StefanDecker">

<rdfs:seeAlso rdf:resource ="http ://ws.
sioc -project.org/mediawiki/mediawiki.

26Another advantage of relying on the API is that any
changes on the SIOC Ontology are immediately replicated
in the API. Then, the DokuWiki plugin (as well as the Me-
diaWiki one) are constantly up-to-date with the ontology
changes, with only a few efforts (simply loading the new
API version in the exporters).

php?wiki=http ://en.wikipedia.org/wiki
/User:StefanDecker "/>

</sioc:UserAccount >

Listing 2: User Modeling in the MediaWiki exporter

These seeAlso links are very useful not only to provide
link to other related RDF documents, that can be used for
instance when browsing data with Tabulator, but also in a
crawling perspective. A RDF crawler could easily follow all
the seeAlso links found on every document and continue to
crawl. In this regard, for example, we crawled and exported
entire wiki sites just following these links. A different ap-
proach, but with the same scope, has been adopted with
the DokuSIOC plugin. As described in the previous section
using content-negotiation it is possible to switch between
the standard HTML view of the wiki article and its RDF
representation, moreover a meta link added to the header
of the DokuWiki HTML view points to the semantic rep-
resentation of each article easing the RDF data discovery
process.

In a Linking Open Data perspective a relevant opportu-
nity is the association between the wiki user’s OnlineAc-

count and the foaf:Person holder of the account. And this
is possible with the foaf:holdsAccount property. Using this
feature it becomes possible to interlink precisely all the user
accounts on different wikis belonging to the same person
and then, for example, to know what are the contributions
made by the same persons on different wikis, what are their
interest areas, etc. At the moment it is possible but since
most of the wiki users do not provide their FOAF profile,
we still have to use the username as a literal, with all the
ambiguities and inaccuracies that this method brings.

Another interesting feature is the linkage to the corre-
sponding DBpedia27 resource (DBpedia being the RDF ex-
port of WikiPedia [2]), if the article belongs to the english
Wikipedia. Since DBpedia semantically models the content
of a Wikipedia page, this connection is very useful to link
semantic data about the content and the structure of a wiki
article. DBpedia resource URIs are used in range of the
foaf:primaryTopic property, as this property relates a doc-
ument to the main thing that the document is about. Ob-
viously this linkage between DBpedia and Wikipedia is im-
mediately possible only with the MediaWiki exporter, since
Wikipedia is based on the MediaWiki software. However, we
are currently working on topic extraction from pages belong-
ing to other wikis, so that it would be possible to link every
wiki page to the related Wikipedia/DBpedia categories or
even to corresponding similar articles, enabling better inter-
linking capabilities across wikis.

4. APPLICATIONS FOR CROSS-WIKIS SE-
MANTIC SEARCH

In this section, we will detail how we designed a Semantic
Web-based application using semantic data generated from
the previously detailed systems. In particular our main ob-
jective is to show that the wiki model we propose allows for
interoperability between wiki platforms, and that Semantic
Web technologies can (i) really improve our usual wiki expe-
rience based on typical Web 2.0 applications and (ii) permit
to discover new knowledge in a faster and more accessible

27http://www.dbpedia.org

way.
As a first step, we exported and crawled different Medi-

aWiki and DokuWiki instances. Five different wikis have
been crawled, four from the MediaWiki platform and one
from the DokuWiki one. Each MediaWiki site has been
crawled using a single entry point thanks to the use of the
rdfs:seeAlso links. The DokuWiki wiki has been installed
locally and a subset of the data from the official PHP wiki
has been imported in it28 (since our DokuWiki plug-in is not
implemented in that wiki). It is important to note that each
wiki we crawled belongs approximately to the same area of
interest in order to have a high probability of shared top-
ics and users. The MediaWiki sites collected are: Seman-
ticweb.org29, Protégé Wiki30, RDFa Wiki31 and the ON-
TOLORE Karlsruhe wiki32, all focusing on Semantic Web
technologies, with shared contributors as we will see next.

In total, we collected about 1GB of RDF data and loaded
it in the OpenRDF Sesame triple-store33 [10]. As we needed
an higher degree of inference (because of the OWL transitive
properties) we also installed and configured the reasoning
engine OWLIM34 on the top of it. The crawling process of
all the wikis took about one entire day (24 hours), and every
operation has been made on only one single-core machine.
In total we collected around 45,500 triples, 3,400 wiki arti-
cles and 700 users. Once all the data has been collected it
has been inserted in a Sesame+OWLIM triple-store. This
process, because of the OWL inference (new triples are en-
tailed at loading time in Sesame+OWLIM), took around two
hours to be completed on the same machine, but then every
query ran with the SPARQL endpoint did not take more
than 3 seconds to be executed, in spite of the complexity
of some of them, as we will see. As regards the scalability
of the system our implementation is completely independent
by the underlying triple-store. Several RDF stores have been
demonstrated as capable to address the scalability require-
ment with a large amount of data. A comprehensive study,
and a benchmark experiment, comparing the performance
of popular RDF stores has been conducted in [7].

After this configuration step, the system was ready to be
tested with SPARQL queries. In the following section some
of the advanced queries we ran are detailed. Then, in Sec-
tion 4.2 we will describe the structure of the application for
semantic search and faceted browsing we built on top of the
triple-store and its SPARQL endpoint.

4.1 Advanced Querying and Cross-wiki Inte-
gration

Since our data has been loaded in an RDF store, all the
queries were done using SPARQL — SPARQL Protocol And
RDF Query Language [1] —, the W3C standard for query-
ing RDF data. As we can see, it offers the advantage of
having a single and standard language to query wiki data,
while developer that need to query original systems have
to learn a new API for each new system we want to query.
Then, we solved one issue that we mentioned originally in

28The official PHP.net wiki: http://wiki.php.net/
29http://www.semanticweb.org
30http://protegewiki.stanford.edu
31http://rdfa.info/wiki/RDFa_Wiki
32http://logic.aifb.uni-karlsruhe.de/wiki/ONTOLORE
33A triple-store, or RDF store, aims at storing RDF data and
providing querying interfaces for it.

34http://www.ontotext.com/owlim/

our motivation, i.e. the problem of having different ways to
query different wikis.

A first example of advanced querying for a particular wiki
is the ability to answer to the following question: “what
are the collaborating users that worked alternatively on the
same wiki article?”. In Listing 3 we provide the SPARQL
implementation of this query.

SELECT DISTINCT ?wikiArt ?Contrib_a ?
Contrib_b

WHERE {
?x sioc:latest_version ?wikiArt.
?wikiArt sioc:earlier_version ?VersA .
?VersA sioc:earlier_version ?VersB ;
dc:contributor ?Contrib_a .

?VersB sioc:earlier_version ?VersC ;
dc:contributor ?Contrib_b .

?VersC dc:contributor ?Contrib_a .
FILTER (? Contrib_a != ?Contrib_b) .

}

Listing 3: Identifying collaborating users

As we can see, this query takes advantage of the transi-
tivity of the newly created property sioc:earlier_version,
since we identify users that worked on earlier versions, and
not only immediately on the previous one. The query pro-
vides the article URI and the two usernames in case the first
user (?Contrib_a) re-edited the article after a modification
made by the second user (?Contrib_b). It enables people
to look for users sharing the same interests and knowledge
areas. It can be also very important especially in a Social
Semantic Web context.

Another interesting feature of our approach is the abil-
ity to do cross-wikis querying, since wikis are now based on
the same model. The following query, in Listing 4, identi-
fies users involved in different wikis, looking for the same
usernames.

SELECT DISTINCT ?creator1 ?page1 ?page2 ?
wiki1 ?wiki2

WHERE {
?page1 sioc:has_container ?wiki1 ;
dc:contributor ?creator1 .

?page2 sioc:has_container ?wiki2 ;
dc:contributor ?creator2 .

FILTER (str(? creator1)==str(? creator2)) .
FILTER (str(?wiki1)!=str(?wiki2)) .

}

Listing 4: Identifying pages created by a single user
in different wikis

Yet, as this query relies on a FILTER clause, it will iden-
tify common users only if they use the same account name
on two different wikis. Moreover, we can imagine that some
common account names will be used by different people on
different wikis, e.g. JohnSmith. To that extend, we can
benefit from the strong ties that exist between FOAF and
SIOC and the fact we are modeling a wiki user using the
sioc:UserAccount class. One person can indeed define in
his FOAF profile the various wiki accounts he owns, using
simple foaf:holdsAccount properties. Then, the previous
query can be adapted to deal not only with text strings to
identify the user, but with their related accounts from the
FOAF URI, so that a single query can be used to retrieve
all the contributions of a user whatever the wiki used was.
Moreover, since the wiki model is based on SIOC, the same

query can be used to retrieve wiki pages, blog posts, etc. as
follows.

SELECT DISTINCT ?content
WHERE {
<http :// example.org/js#me> foaf:

holdsAccount ?account .
?account rdf:type sioc:UserAccount .
?content sioc:has_creator ?account .

}

Listing 5: Cross-sites query using FOAF and SIOC

4.2 Enabling Semantic Search
The application we built to show the potential of seman-

tic technologies applied to wikis has the typical architecture
of many Semantic Web applications. Its structure can be
divided in three layers concerned with storage, querying or
data acquisition, and visualization. In the previous sections
we already described the storage part of the system: it is
based on a Sesame+OWLIM triple-store with the data we
crawled from different wikis, and it exposes a SPARQL end-
point where is possible to have an interface with the querying
and acquisition module.

As regards the data acquisition module we wrote a PHP
script that queries our triple-store, collects and parses the
results and translates the data in the correct format for the
visualization layer. The PHP script is the core of the appli-
cation, and in this specific application it basically needs to
run two different SPARQL queries to obtain the necessary
data, but it can be personalized very easily with regard to
the particular desired use-case.

The visualization layer has been built with the SIMILE
Exhibit framework35. This framework allows developers to
create (X)HTML pages with dynamic exhibits of data col-
lections which can be searched and browsed using faceted
browsing capabilities. Exhibit is a set of Javascript files
that run in a user’s browser. All it needs is a graphical con-
figuration and personalization made directly on the HTML
code of the page to display and to receive data built with
a correct structure and a supported format. The most used
format with Exhibit is JSON and in our specific case this is
what we adopted. In this regard our PHP script converts
the XML data returned by the SPARQL queries into the
JSON format.

Once the username of a wiki user has been introduced
in the first page, the application provides two different sec-
tions of information. The first one is about all the wiki users
who contributed on the same wiki articles as the requested
user did. In other words it looks for her/his co-authors dis-
tributed on several different wikis. The second one provides
details about all the articles contributed by the user in every
wiki and the related topics of interest.

In Fig. 2 we display a screenshot of the developed web
application. As we can see from the image, in the first hor-
izontal section there are three lists (or facets) showing the
co-authors with the related wiki articles in common and the
list of wikis on which the articles are located. Every element
of the facets is selectable and once selected it filters all the
other results on the other facets. The first section of results
is obtained by the first query formulated by the PHP script.
The SPARQL query used in this case is displayed in List-

35http://www.simile-widgets.org/exhibit/

ing 6 and it selects the wiki site, the wiki article and the
related co-author of the user ”MichaelHausenblas”.

SELECT DISTINCT ?wiki ?title ?coauthor
WHERE {

?pag1 dc:contributor ?me. FILTER regex(?
me, "MichaelHausenblas", "i").

?pag1 dc:title ?title ;
sioc:has_container ?wiki .

?pag2 dc:title ?title2 . FILTER regex(
str(?title), str(? title2)).

?pag2 dc:contributor ?coauthor . FILTER
((? coauthor) != (?me)).

}order by ?wiki

Listing 6: First query of the application

The second section of results, obtained by the second
SPARQL query, displays all the articles contributed by the
searched user on different wiki sites. It also adds a list of the
categories (in the range of the sioc:topic property) related
to each wiki article extracted. In other words this particular
view highlights the activities, the interests and the exper-
tise areas of the searched user. The query formulated by the
script for this section is displayed in the following Listing 7.

SELECT DISTINCT ?wiki ?title ?category
WHERE {

?pag1 dc:contributor ?me. FILTER regex(?
me, "MichaelHausenblas", "i").

?pag1 dc:title ?title ;
sioc:has_container ?wiki ;
sioc:topic ?category.

}ORDER BY ?wiki

Listing 7: Second query of the application

The last feature the SIOCWiki browser shows is a dy-
namic list displaying all the results extracted by the previous
two sections. The results here are more detailed and they
can be easily grouped and sorted. They are also filtered by
the events triggered by the facets above.

4.3 Advantages of the Semantic Web Approach
Compared to the Original Web 2.0 One

The Semantic Web approach we showed with this applica-
tion can be compared to the currently widely adopted Web
2.0 approach. Following the Web 2.0 way, in order to obtain
similar results and functionalities, we would have to use each
software platform separately. For example, to obtain the list
of all the co-authors of one particular user we would have to:
first go to the page of the user in each wiki platform; then
use some special service provided by the wiki software to
obtain her or his contributions; then, for each contribution,
retrieve the history and identify all users. In addition, that
workflow assumes that the wiki service provides the list of
the contribution for every user, which is true for the Medi-
aWiki platform but not for the DokuWiki one. Then, we
not only simplified the process (MediaWiki) but also added
some features that could not have been provided with the
original tool.

Another option would be to develop some platform-specific
applications which use the specific wiki software API. Once
again, the interoperability is lost together with the cross-
wiki global view of the data. Hence we might state that
the Web 2.0 approach can still be an option for use-cases
where the cross-platform interoperability is not needed and

Figure 2: SIOCWiki Browser: a screenshot showing the results found for the username “MichaelHausenblas”.

the number of the queries is limited, since these services are
already available on the Web and do not require to build
an infrastructure as ours. On the other hand, the Semantic
Web approach needs initially more time to set-up the sys-
tem (notably because of crawling and storing data) but then
allows for advanced and fast querying processes and hidden
knowledge discovery. It is also particularly suited for use-
cases such as the one we exposed with this work, namely
to build an application that can be accessible to everyone
and easily customizable and integrating data from different
sources, based on different platforms.

5. CONCLUSION
In this paper we proposed and described a model to repre-

sent the social and structural wiki features in an unified way
using the SIOC ontology and lightweight semantics. Then
we detailed how we extracted semantic data from wikis us-
ing two relevant platforms: Mediawiki and Dokuwiki; and
we described how different types of exporters can be built
on these types of wikis. The design criteria of a webser-
vice exporter for the MediaWiki platform and a plugin for
DokuWiki have been made following the Linked Data best
principles in order to provide interlinked data. On the top
of the data extracted from the aforementioned exporters a
semantic search system has been built. It provides a user-
friendly interface and advanced features to retrieve infor-
mation contained in heterogeneous wikis in a unified way.
Despite its simplicity, the presented application allows for
advanced and fast querying processes and hidden knowledge

discovery, showing potentialities that cannot be obtained us-
ing the traditional Web 2.0 instruments. Hence we showed
an overall benefit on applying Semantic Web technologies to
wikis, enabling users to access the information generated by
this process in a simple and transparent way.

With the present work we developed a lightweight Se-
mantic Web application to demonstrate the capabilities of
semantic technologies applied to wikis, but further devel-
opments may go in the direction of creating a stable and
widespread service available on the Web. In this regard our
current research is involved in finding ways to interlink wiki
articles also reasoning on the content of a page. Moreover
we are considering to add real-time search capabilities to
the presented architecture, so that it would be possible to
entirely crawl a wiki site only the first time and then keep
the data updated following the wiki changes in real-time.

6. REFERENCES
[1] SPARQL query language for RDF. W3C

Recommendation 15 January 2008, World Wide Web
Consortium, 2008.
http://www.w3.org/TR/rdf-sparql-query/.

[2] Sören Auer, Chris Bizer, Jens Lehmann, Georgi
Kobilarov, Richard Cyganiak, and Zachary Ives.
Dbpedia: A nucleus for a web of open data. In
Proceedings of the 6th International Semantic Web
Conference and 2nd Asian Semantic Web Conference
(ISWC/ASWC2007), volume 4825 of Lecture Notes in
Computer Science, pages 715–728. Springer, 2007.

[3] Danny Ayers and Max Völkel. Cool URIs for the
Semantic Web. W3C Interest Group Note 03
December 2008, World Wide Web Consortium, 2008.
http://www.w3.org/TR/cooluris/.

[4] Tim Berners-Lee. Linked Data. Design issues for the
world wide web, World Wide Web Consortium, 2006.
http://www.w3.org/DesignIssues/LinkedData.html.

[5] Tim Berners-Lee, James Hendler, and Ora Lassila.
The Semantic Web. Scientific American, May 2001.

[6] Chris Bizer, Richard Cyganiak, and Tom Heath. How
to Publish Linked Data on the Web. Technical report,
2007. http://www4.wiwiss.fu-berlin.de/bizer/
pub/LinkedDataTutorial/.

[7] Christian Bizer and Andreas Schultz. The berlin
sparql benchmark. International Journal On Semantic
Web and Information Systems, 2009.

[8] John G. Breslin, Andreas Harth, Uldis Bojārs, and
Stefan Decker. Towards Semantically-Interlinked
Online Communities. In Proceedings of the 2nd
European Semantic Web Conference (ESWC2005),
volume 3532 of Lecture Notes in Computer Science,
pages 500–514. Springer, 2005.

[9] John G. Breslin, Alexandre Passant, and Stefan
Decker. The Social Semantic Web. Springer, 2009.

[10] Jeen Broekstra, Arjohn Kampman, and Frank van
Harmelen. Sesame: A Generic Architecture for Storing
and Querying RDF and RDF Schema. In The
Semantic Web - ISWC 2002. First International
Semantic Web Conference, volume 2342 of Lecture
Notes in Computer Science, pages 54–68. Springer,
2002.

[11] Michel Buffa, Fabien L. Gandon, Guillaume Ereteo,
Peter Sander, and Catherine Faron. SweetWiki: A
semantic wiki. Journal of Web Semantics, 6(1):84–97,
2008.

[12] Thomas. R. Gruber. Towards Principles for the Design
of Ontologies Used for Knowledge Sharing.
International Journal Human-Computer Studies,
43(5–6):907–928, 1995.

[13] Andreas Harth, Hannes Gassert, Ina O’Murchu,
John G. Breslin, and Stefan Decker. WikiOnt: An
Ontology for Describing and Exchanging Wikipedia
Articles. In Proceedings of Wikimania 2005 – The
First International Wikimedia Conference, 2005.

[14] Hak Lae Kim, Sung-Kwon Yang, John G. Breslin, and
Hong-Gee Kim. Simple algorithms for representing tag
frequencies in the scot exporter. In Proceedings of the
2007 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, pages 536–539. IEEE
Computer Society, 2007.

[15] Markus Krötzsch, Denny Vrandecic, and Max Völkel.
Semantic MediaWiki. In Proceedings of the 5th
International Semantic Web Conference (ISWC
2006), volume 4273 of Lecture Notes in Computer
Science, pages 935–942. Springer, 2006.

[16] Christoph Lange, Uldis Bojārs, Tudor Groza, John G.
Breslin, and Siegfried Handschuh. Expressing
Argumentative Discussions in Social Media Sites. In
Proceedings of the ISWC2008 Workshop on Social
Data on the Web (SDoW2008), volume 405 of CEUR
Workshop Proceedings. CEUR-WS.org, 2008.

[17] Alistair Miles and Sean Bechhofer. SKOS Simple

Knowledge Organization System Reference. W3C
Working Draft 29 August 2008, World Wide Web
Consortium, 2008. http://www.w3.org/TR/2008/
WD-skos-reference-20080829/.

[18] Richard Newman, Danny Ayers, and Seth Russell. Tag
ontology, December 2005.

[19] Fabrizio Orlandi and Alexandre Passant. Enabling
cross-wikis integration by extending the SIOC
ontology. In Proceedings of the Fourth Workshop on
Semantic Wikis (SemWiki2009), 2009.

[20] Alexandre Passant and Philippe Laublet. Meaning Of
A Tag: A collaborative approach to bridge the gap
between tagging and Linked Data. In Proceedings of
the WWW2008 Workshop Linked Data on the Web
(LDOW2008), volume 369 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

[21] Alexandre Passant and Philippe Laublet. Towards an
Interlinked Semantic Wiki Farm. In Third Semantic
Wiki Workshop – The Wiki Way of Semantics,
volume 360 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

[22] Sebastian Schaffert. IkeWiki: A Semantic Wiki for
Collaborative Knowledge Management. In First
International Workshop on Semantic Technologies in
Collaborative Applications (STICA 06), 2006.

[23] Max Völkel and Eyal Oren. Towards a Wiki
Interchange Format (WIF) - Opening Semantic Wiki
Content and Metadata. In Proceedings of the First
Workshop on Semantic Wikis - From Wiki to
Semantics (SemWiki-2006), volume 206 of CEUR
Workshop Proceedings. CEUR-WS.org, 2006.

