
Wiki Grows Up: Arbitrary Data Models,
Access Control, and Beyond

Reid Priedhorsky
IBM T.J. Watson Research Center
Cambridge, Massachusetts, USA

reid@reidster.net

Loren Terveen
University of Minnesota

Minneapolis, Minnesota, USA
terveen@cs.umn.edu

ABSTRACT
Ward Cunningham’s vision for the wiki was that it would be “the
simplest online database that could possibly work”. We consider
here a common manifestation of simplicity: the assumption that
the objects in a wiki that can be edited (e.g., Wikipedia articles)
are relatively independent. As wiki applications in new domains
emerge, however, this assumption is no longer tenable. In wikis
where the objects of interest are highly interdependent (e.g., geo-
graphic wikis), fundamental concepts like the revision and undoing
must be refined. This is particularly so when fine-grained access
control is required (as in enterprise wikis or wikis to support col-
laboration between citizens and government officials). We explore
these issues in the context of the Cyclopath geowiki and present
solutions that we have designed and have implemented or are im-
plementing.1

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Computer-supported
cooperative work, Web-based interaction

General Terms
Algorithms, Human Factors, Reliability, Theory

Keywords
Wikis, data models, access control, geographic wikis, geowikis

1. INTRODUCTION
Over the past decade, a new model of collaborative knowledge

synthesis and production [2] has emerged, based on a simple yet
fundamental innovation: invert the publishing model. Review work
after publication, not before.2

This new wiki model is successful. Users in fact do perform the
work of creating and synthesizing content as well as the meta-work

1This paper describes work done while both authors were at the
University of Minnesota; IBM has no connection with Cyclopath.
2This introduction is a revised and extended version of [17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym ’11, October 3-5, 2011, Mountain View, CA, USA.
Copyright 2011 ACM 978-1-4503-0909-7/11/10 ...$10.00.

of reviewing, correcting, and organizing. For example, Wikipedia,
the largest and most successful wiki, has amassed over three million
encyclopedia articles in English alone [23] and is generally con-
sidered to be roughly as accurate as traditional encyclopedias [8].
Wikia, a for-profit wiki company, hosts over 100,000 individual
wikis [13]. And mathematical models developed by Cosley [3] sug-
gest that the wiki model develops the same final quality as classical
publishing but does so faster.

A second fundamental innovation of the model is maximally open
editing. Whenever reasonable – and the wiki philosophy calls for
a very generous interpretation of “reasonable” – any reader may
make and publish changes (without pre-publication review), and
anything can be changed. (Note that obstacles to open editing can
be subtle, such as outmoded policy, an unfriendly user interface,
technical quirks, or excessive territoriality.) Finally, an important
special case is that undoing work must be easy: any change can be
easily reversed.

Finally, these two innovations require a third in order to work:
transparent changes. It must be easy for all readers to see how the
wiki is being changed, and by whom. Specifically, wikis need recent
changes lists summarizing the flow of changes in the wiki or parts of
it, watching to enable automatic notification of users when changes
of interest occur, and diffing to let reviewers see and analyze pre-
cisely what changed in particular revisions. This transparency is
essential for enabling the meta-work tasks (such as reversing unde-
sirable edits) which make the wiki model viable.

These three innovations – post-review, open editing, and trans-
parency – are the fundamental properties which define the wiki
model. However, like any technology, wikis are maturing. In this
paper, we explore the important implications of two key dimensions
of maturation.

First, wiki practitioners have discovered that in real-world wikis,
limitations on editing are usually needed, and these limitations must
be more subtle than allowing a given user to view or edit either the
whole wiki or nothing at all. Fine-grained access control – the abil-
ity to specify who can or cannot view and edit particular subsets
of the wiki – is required. Even traditionally very open wikis need
this; for example, Wikipedia sets articles with severe vandalism or
edit warring problems to a “protected” or “semi-protected” state,
making them editable only by administrators or established users,
respectively. And for wide adoption of wikis in enterprise settings,
mature access control is essential, as contractual, business, or cul-
tural constraints may dictate arbitrary controls on editing.

Second, wikis are moving beyond collections of relatively in-
dependent text-focused articles. For example, there is significant
progress in mapping, with communities like Open Street Map and
Cyclopath building large, rich geographic datasets. Other interest-
ing possibilities include wikis for sketching, animation, or diagrams;

63

for maintaining an annotated bibliography with a citation graph; or
for any other task dependent on a structured data model. In other
words, wikis are moving into domains where multiple, highly inter-
dependent, often non-textual objects must be visible and editable
at once. In order to accommodate these developments, wikis must
store not an independent state (and history) for each individual ob-
ject but rather a single global state (and history) that coordinates
individual objects’ states. This notion is very similar to the ACID
model (atomicity, consistency, isolation, and durability) which has
been well-established in the database community for some time [11].

These two new dimensions, particularly in concert, raise signif-
icant implementation difficulties. This paper explores these diffi-
culties and proposes solutions, which we have implemented or are
implementing in the Cyclopath geowiki for bicyclists. We first con-
sider related work (Section 2) and then outline the state of tradi-
tional wiki implementations (Section 3); we then explore the moti-
vation, complexities, and implementation of first moving to a global
wiki state (Section 4) and then global state plus fine-grained access
control (Section 5).

2. RELATED WORK

2.1 Beyond public wikis
Wikipedia has received more scholarly and popular attention than

any other wiki (or any open collaboration system). However, it is a
public wiki: editing is open to essentially anyone, with only limited
restrictions that have emerged over time. This model is less suitable
for wikis and open collaboration systems in other contexts.

Enterprise Wikis. Researchers have studied wikis used in corpo-
rate settings. A common observation is that access to information
must often be limited, for reasons including legal restrictions (e.g.,
on sharing classified information with foreign nationals) [10] and
organizational power relationships or competition between stake-
holders [4]. Further, enterprise wiki users often feel strong personal
ownership of content they add (and are organizationally accountable
for it) and a corresponding unwillingness to edit content “owned”
by others [14]. In other words, enterprises often use wikis as a tech-
nology without accepting the wiki philosophy of openness.

Volunteered Geographic Information. The field of Geographic
Information Systems (GIS) is concerned with collecting and ana-
lyzing geographic data [12]. Traditionally, work in this area has
been performed by GIS professionals using specialized software.
However, in the past few years, the field has become interested in
having laypeople collect and contribute geographic knowledge, an
approach known as Volunteered Geographic Information (VGI) [9].
However, GIS professionals prioritize precision and data quality
quite highly. Therefore, they typically limit the role of volunteered
information and “accept” it only after applying automated valida-
tion and/or manual expert curation [6].

Citizen Science. A similar approach is seen in citizen science; for
such projects, laypeople collect and enter data that are used to aid
scientific inquiry. For example, birders participating in the eBird
project enter their observations of birds. Then, “automated data qual-
ity filters developed by regional bird experts review all submis-
sions” and “local experts review unusual records that are flagged
by the filters”.3 Likewise with the Encyclopedia of Life: “anyone
can contribute... but materials from unvetted contributors are ini-
tially marked as unreviewed.... EOL curators then identify the best

3http://ebird.org/content/ebird/about

quality contributions and promote them from unreviewed to trusted
status.” Curators are “professional scientists” and “experienced cit-
izen scientists” who must apply and be approved.4

Summary. Enterprise wikis, VGI systems, and citizen science are
examples where an open approach is desirable but factors such as
organizational culture and perceived data quality requirements con-
strain access policies. We present in this paper our approach to
integrate access control into wikis, giving wiki owners necessary
flexibility to define appropriate access for specific user groups.

2.2 Access control in collaborative systems
Researchers have identified a number of issues relevant to access

control in collaborative systems [5, 22]. We highlight four:

• The access control model must support collaborative notions
such as groups of users and joint ownership.

• The model must support fine-grained access specification.

• Users should not have total discretion to specify access rights.
Both basic access control (who can do what to which objects)
and meta access control (what are the permissible access poli-
cies for any given object) are needed [5].

• The model must be understandable and usable. Specifically,
we identify three classes of users with different usability re-
quirements. Programmers must understand the model fully
and be able to implement any desired access specification, us-
ing a table-based language; administrators must understand
the basic concepts and be able to select from a small set of
meta access policies; and users must understand the differ-
ent access rights (viewing, editing, etc.) and decide to whom
different rights should be granted for a given object.

The basic form of access control we propose in this paper falls
under the rubric of role-based access control (RBAC): for each ac-
cess right on each object, we specify an access control list (ACL)
containing a set of users who have that right. For simplicity of pre-
sentation, and because the simplifications are straightforward for
implementers to reverse, we gloss over a few details of the model –
that the lists can contain groups or roles (e.g., “administrator”, “cus-
tomer service representative”), that in reality most objects point to
a few ACLs stored just once, etc. – and assume that each object has
an independent ACL containing simply a set of users.

In forgoing more complex access control models [22], we give
up some capabilities. Most notably, the model we propose has no
notion of context – access is the same for any given user regardless
of context. For example, we can’t specify that a user can edit a map
object only if his or her location-aware device reports that it is near
the object or has been recently.

We do this for two reasons. First, we have not identified use cases
that would require it, and it is consistent with the wiki philosophy to
be as open as possible. Second, even relatively simple access con-
trol such as RBAC adds significant conceptual and implementation
complexity to the wiki model (as we explain below), and adding yet
more complexity is something to avoid.

One issue that (to our knowledge) the security community has
not addressed is the difficulties that arise when undoing changes in
a collaborative system with fine-grained access control. This is a
core contribution of our paper.

4http://www.eol.org/content/page/help_build_eol

64

http://ebird.org/content/ebird/about
http://www.eol.org/content/page/help_build_eol

2.3 Version control systems
As in wikis, change management is important in software de-

velopment, which is also focused around a collection of collabo-
ratively changing, highly interdependent objects (source code and
other files). Much intellectual and technical effort has gone into de-
veloping version control systems (VCSes) which primarily support
software development. Our discussion is based on Raymond [20]
and Fowler [7]. We identify three generations of VCSes:

• First-generation systems such as RCS and CVS are file ori-
ented: while they have a notion of a software project being a
unified set of files, each file’s history is independently man-
aged. Multiple files changes can be saved (committed) at
once, but this operation is not atomic. This model is very
similar to what we call Wiki 1.0 (Section 3).

• Second-generation systems such as Subversion are fileset ori-
ented. These systems have a single global history (called a
repository) for each project, and commits are atomic. They
correspond to our Wiki 2.0 (Section 4).

• Third-generation systems such as git and Mercurial are both
fileset-oriented and distributed: instead of a single repository,
there are multiple repositories which communicate changes
between each other as peers, removing the need for a single,
centrally managed repository. Might this architecture be Wiki
4.0? We speculate briefly in Section 6.

To our knowledge, version control systems have not grappled
with the issues related to fine-grained access control that we have
identified and explore as Wiki 3.0 (Section 5).

Another key feature that has steadily grown in sophistication as
VCSes mature is branching: the notion that the history of a soft-
ware project is not linear but tree-shaped or even a directed acyclic
graph. For example, developers find it useful to let disruptive work
continue on the main line of development while a stable version of
the software is prepared for deployment, and they also find it useful
to merge the minor bug fixes made in preparing that stable version
back into the main line. Even fairly primitive systems like RCS had
branching, and branching and merging in a modern system like git
is so good that some observers call it “omniscient” [21]. Branching
is relevant to wikis as well, a point we expand on below.

While prior work has addressed both global state management
in a set of changing interdependent objects and fine-grained access
control in collaborative systems, to our knowledge the intersection
of these ideas is unexplored. This is the central contribution of our
present work.

3. WIKI 1.0
This section describes how traditional wiki software, such as the

MediaWiki software used by Wikipedia, works. The goal is to make
explicit some of the properties and assumptions that are relevant to
the modifications of the wiki model that we suggest; we do not
explain in detail how any particular software operates but rather
identify the general principles. We first discuss how data are stored
and modified and then how access control works.

3.1 Core assumptions
Fundamentally, a wiki is simply a collection of objects (such

as encyclopedia articles) that can be changed, with the history of
changes retained for each object. Specifically, this history forms a
sequence of content states; we call each such state a revision. A
revision is created when a user does some editing work and then

Article
Name Rev. Text

Cat 1 Cats are mammals.
Cat 2 Cats are cute mammals.
Mouse 1 Mice have pointy noses.
Cat 3 Cats are cute mammals with whiskers.
Mouse 2 Mice have pointy noses that wiggle.

Figure 1: Editing history of two wiki objects, the articles “Cat”
and “Mouse”. While the articles are stored in the same table,
their states are managed independently.

saves these changes to the server, making them available to other
users. Revisions are atomic: they can’t be partly saved, and there is
no meaningful state between revisions.

In traditional wikis, each object has its own independent history
(see Figure 1). This is based on two underlying assumptions:

• Exactly one object is seen or edited at once during a single
session, and thus a revision affects exactly one object, not
part of an object or more than one object.

Interface sugar is often provided to mitigate this somewhat
limiting assumption. For example, one can open multiple
browser tabs to view or edit different Wikipedia articles, and
this creates multiple independent sessions. On the other hand,
MediaWiki lets users restrict editing to a single section of a
larger article, but when saved, the revision still creates a new
state for the entire article.

• Relationships between objects are weak: changing one object
doesn’t introduce fundamental problems in other objects or
cause larger-scale breakage. (In collections of articles like
Wikipedia, the key relationship is the hyperlink; changing a
link in Article A affects only Article A, regardless of which
article is linked to.)

As a consequence, two revisions on different objects have no
meaningful ordering beyond weak inferred relationships such as
timestamps. At a sufficiently fine time precision (less than 1 second
in Wikipedia), there is no well-defined global state; i.e., at any given
instant, the global state is ambiguous. Thus, the unit of revision in
traditional wikis is “one object”.

3.2 Undoing work
A critical operation in wikis is undoing saved revisions which

are erroneous, malicious, or otherwise undesirable. There are three
different ways to accomplish this task; in the following, we assume
that the bad revision is revision N .5

• Manually edit the current state until the undesirable content
is removed or corrected, and then save the changes as a new
revision. As this technique is effectively identical to normal
editing behavior (i.e., not concerned with undoing work), it
does not encounter the difficulties this paper is concerned
with, and we will not consider it further.

• Revert the offending revisions(s) by copying revision N − 1
and saving it as a new revision M . While this technique is
simple and always works regardless of the presence or con-
tent of revisions between N and M , all work after revision

5These techniques can be straightforwardly extended to address
more than one bad revision, so we omit that discussion for simplic-
ity of presentation.

65

Article
Name Rev. Text

Cat 1 Cats are mammals.
Cat 2 Cats are cute mammals.
Cat 3 Cats are cute mammals with whiskers.
Cat 4 Cats are mammals.

Figure 2: History of article “Cat” after reverting revision 2.
Note that with whiskers, added in unrelated revision 3, is lost.

Article
Name Rev. Text

Cat 1 Cats are mammals.
Cat 2 Cats are cute mammals.
Cat 3 Cats are cute mammals with whiskers.
Cat 4 Cats are mammals with whiskers.

Figure 3: History of article “Cat” after reverse-merging revi-
sion 2; the editing operations in that revision (“add the word
cute between are and mammals”) have been reversed (“remove
the word cute from between are and mammals”) and the re-
versed operations applied to then-current revision 3. Note that
with whiskers, added in revision 3, remains.

N − 1 is removed (requiring additional editing to retrieve
it from history if this content is desirable). Another draw-
back is that a subsequent revert of revisions in the range
[N + 1,M − 1] will reintroduce the undesirable content.

• Reverse-merge the offending revision(s) by computing the
difference between revision N − 1 and N , reversing those
edit operations, and applying the reversed operations to the
current revision M − 1, creating new revision M . For ex-
ample, if revision N consists of the edit operation “add the
word sasquatch”, then the reverse editing operation is “re-
move the word sasquatch”. This technique preserves (per-
haps desirable) work in revisions [N + 1,M − 1], but it is
not always possible, because changes in these later revisions
can make the computed reversed operations nonsensical. For
example, if someone had later changed sasquatch to bigfoot,
the operation “remove the word sasquatch” is meaningless.
(This technique is called “undo” in Wikipedia; we use the
term undo more generally to refer to any kind of editing that
undoes other editing in full or in part.)

A key property of the two undo techniques is this: an undo that is
undone forms a no-op. For example, if revision N is undone (either
by reverting or reverse-merging), creating revision M , and then re-
vision M is itself undone, the combined effect of the two undos is
equivalent to doing nothing at all (though editing between revision
M and its undo might also be lost). This is important because it
preserves the property that any change in a wiki is easily reversible.

Figures 2 and 3 illustrate the distinction between reverting and
reverse-merging, respectively. Note that the two are equivalent if
the newest revision is the one being undone (i.e., N = M − 1).

3.3 Access control
As noted above, real-world wikis need a greater or lesser degree

of access control, which we model using access control lists (ACLs):
for each object and each operation (view, edit, etc.), a set of users
who can do that operation on that object is specified (and this set
can include the anonymous user). For example, in Wikipedia, the

ACL for editing most articles is “everyone”, while protected arti-
cles have the ACL “all administrators” and semi-protected articles
have the ACL “all logged-in users whose accounts meet certain cri-
teria” [24].6 Similarly, the Lotus Communities product from IBM
lets administrators restrict edit and/or view access to wiki pages to
members of particular groups, called “communities”.

The introduction of access control leads to a key decision: what
is the right granularity for access control? Simply put, each object
must have its own (logical) ACLs. ACLs which necessarily apply to
more than one object are overly aggressive (for example, it would
be silly for Wikipedia to protect the entire database just because
the article “George Bush” was attracting frequent vandalism), and
ACLs which apply to some unit smaller than one object are not
needed because objects can be split (and this is particularly so when
global state management is introduced below).7

Thus, the unit of access control is “one object”; specifically, the
unit of revision and the unit of access control are the same. In other
words, anyone who can edit a page can create an arbitrary revision,
including a revision which is a revert or a reverse-merge.

To summarize, while traditional wikis have mature undo facilities
and fine-grained access control, they lack global state management.
We explore this deficiency in the next section.

4. WIKI 2.0: GLOBAL STATE

4.1 Motivation and general principles
The lack of a single global state and the inability to edit more

than one object at once causes problems. Even in a wiki containing
relatively independent objects, some operations necessarily affect
more than one object. For example, renaming a Wikipedia article
involves changing multiple objects – the article itself as well as
every other article that links to it. With no global state, Wikipedia
uses the following awkward workaround: (a) change the article’s
name, (b) create a new article at the old name which redirects to the
new name, so links still work, (c) update these links to point to the
new name, and finally (d) delete the redirect.

These steps are effort-consuming, non-atomic (to the extent that
it can be difficult to ascertain progress), and frequently never com-
pleted. This problem affects routine operations as well; e.g., updat-
ing an illustration and changing its caption cannot be done atomi-
cally, because the illustration is a separate object from the article
that contains its caption (and includes the illustration by reference).

These problems are even more acute in wiki systems containing
data models with strong relationships between objects. For exam-
ple, our own interest in these matters was sparked by the process
of creating Cyclopath, a geographic wiki designed to meet the nav-
igation needs of bicyclists in the Minneapolis-St. Paul, Minnesota
metro area [18, 19]. In the current paper, we discuss the technical
underpinnings of Cyclopath’s wiki technology in much greater de-
tail than previous publications, with a focus towards its application
and extension in rich-data wikis beyond mapping.

6The German-language Wikipedia has a notion of flagged revisions,
affecting which version of an article is seen by default. Because this
scheme controls only defaults and does not actually control access,
it is not relevant to our discussion.
7In certain cases, special powers available to administrators are also
useful. For example, Wikipedia has the notion of hidden revisions –
article states which are invisible to anyone except a small set of wiki
administrators. This mechanism is used to hide edits which must be
permanently hidden due to privacy or legal issues. Because such
special powers do not have a significant effect on our argument, we
omit their discussion for clarity.

66

Figure 4: The Cyclopath user interface. In addition to finding
bicycle routes, the system also lets users edit the transportation
network and other map objects. The system has over 2,500 reg-
istered users and been accessed by 32,000 unique IP addresses.
Of the 13,384 revisions to the Cyclopath map, 7,980 (60%) af-
fect the graph and 8,718 (65%) affect more than one object.

Figure 5: A particularly rich Cyclopath revision; this one added
7 edges and changed 19, added 5 notes, and removed 4 notes.
(Figure from [16].)

Cyclopath’s core data is a graph representing the transportation
network used by bicyclists. Each edge in this graph is a separate
object, and edits which affect the topology of the graph (e.g., adding
a shortcut to the map) necessarily affect more than one edge. Other
edits, such as moving the location of a node (street intersection),
typically do as well. Figure 4 shows a screenshot of the Cyclopath
interface, while Figure 5 illustrates a sample revision.

Another example is a wiki bibliographic database. In this appli-
cation, it would be useful to store one object for each author and
another for each publication, with links between the two as appro-
priate. Furthermore, these links must be explicit, not implicit. If
there are two separate authors named John Smith, their publications
should not be comingled; similarly, the same author might be listed
as John Smith in some places and J. Smith in others. Also, it would

be useful to store an explicit citation graph, which raises the same
linking issues as noted above for Wikipedia articles.

In these types of systems, one can’t even do meaningful edits un-
less more than one object can be viewed and edited at once, and
failing to save these edits atomically – i.e., as a single revision –
risks corrupting the database, either by simply producing nonsensi-
cal history (if multiple revisions are simultaneously saved and in-
dividual object updates shuffled together) or by producing partially
saved revisions (if saving a revision fails partway through).

Similarly, the lack of global atomic revisions damages the relia-
bility of undoing work. With global state, figuring out which edits
across disparate objects were made together is trivial; without it,
this becomes a difficult and error-prone inference task.

Other geowikis have also struggled with undoing work. For ex-
ample, the Open Street Map community has implemented several
techniques of varying capability and complexity but does not ap-
pear to have settled on a unified technique for undoing [15]. The
techniques we outline may be useful to this ongoing effort.

The point is: we must build wikis that can handle arbitrarily com-
plex data models and save arbitrarily complex revisions atomically.
This requires global state and the ability to edit more than one ob-
ject at once. In other words, we need to change the meaning of
revision. We now have a global revision sequence: the unit of revi-
sion is now the whole database, not individual objects, and at every
instant, there is a well-defined global state.

4.2 Implementation overview
We have created a wiki with these properties – Cyclopath. Dis-

play and editing of multiple objects is done in an Adobe Flex-based
application which runs in the browser (this part of the software
is not relevant to the topic of this paper, so we will not discuss
it further). We introduce two core innovations for implementing
global state: (a) a data model to support global state, including sim-
ple queries of historical states, and (b) algorithms for updating the
database as new data are saved.

Vocabulary to support our discussion is as follows. Because the
scope of revision now includes the whole database, we use the term
version to refer to each successive state of an individual object. Sim-
ilarly, a versioned table is a database table which is managed by the
wiki state management system (as not all tables within the database
are necessarily part of the wiki). There is one versioned table for
each type of wiki object; for example, in Cyclopath, there is a ver-
sioned table for edges in the transportation network and another for
points of interest.

The core of the data model is (a) a single Revision table plus
(b) metadata in each versioned table that points back to the Revi-
sion table; this data model is illustrated in Figure 6. The important
column of the Revision table is simply its ID, which we call RID.
While we store additional data about each revision, such as a times-
tamp, who saved the revision, an edit comment, and other items, this
is not important to the versioning system.8

The versioning metadata consists of five columns:

• ID. This is an integer which identifies the object; while not
strictly versioning metadata (i.e., it or some other identifier
would still be present even without versioning), it interacts
closely with the versioning system.9

8We chose not to base our revision system on timestamps for the
following reasons: special attention is often needed for subsecond
precision, they can be quirky (e.g., one must worry about time zones,
and different systems might have differing clocks), and integer re-
vision numbers have a unique expression that is simple for both
machines and humans to compare.
9Though it is not required by the state management system, all ver-

67

Article
ID Version VSR VBR Deleted? Name Text

5555 1 21 23 no Mouse Mice have pointy noses.
6666 1 22 23 no Cat Cats are mammals.
7777 1 22 24 no Dog Dogs smell funny.
5555 2 23 ∞ no Mouse Mice have pointy noses that wiggle.
6666 2 23 24 no Cat Cats are cute mammals.
6666 3 24 ∞ no Cat Cats are cute mammals with whiskers.
7777 2 24 ∞ yes — —

Revision
ID

21
22
23
24

Figure 6: Editing history of three wiki objects, the articles “Cat”, “Dog”, and “Mouse”. This figure illustrates four revisions: revision
21 created the article “Mouse”; revision 22 created the articles “Cat” and “Dog”; revision 23 altered the text of both “Cat” and
“Mouse”; and revision 24 altered the text of “Cat” and deleted the article “Dog”. (Note that the set of objects directly affected by a
revision N are those objects with VSR = N .) In this example, there is only a single versioned table, as the example includes only
one type of wiki object (encyclopedia articles). However, the data model can be arbitrarily complex (additional types of wiki objects
would each have their own tables), and a given revision can affect arbitrarily many objects in arbitrarily many tables. There is only
one Revision table regardless of the data model’s complexity.

• Version. While ID identifies the object, this column identifies
a particular version of that object, and thus the primary key
for the table is the pair (ID, Version). The first state of an ob-
ject is stored in a row with version 1, and for each subsequent
new state, the version number is incremented.10

• Valid Starting Revision (VSR). This is the first revision in
which the row is the valid version of the object.

• Valid Before Revision (VBR). This is the first revision in
which the row is invalid.11 The newest (current) version of
an object has VBR =∞.

• Deleted. A boolean flag: if true, then the object has been
deleted and the row contains no valid data. Undeletion can
be accomplished by creating another version with Deleted
set back to false.

In other words, the state of an object valid at global revision N is
the unique row where VSR ≤ N < VBR; this row can be retrieved
without consulting metadata from any other rows. In particular, the
set of objects directly affected by revision N is those objects where
VSR = N .

The algorithm for creating a new revision is as follows.

1. The user edits as desired. The first time an object is changed
during the editing session, mark it dirty and increment its ver-
sion number. (Newly created objects are assigned a version
number of 1.)

2. Obtain the next revision number, M , and create a row in the
Revision table. RIDs increase monotonically so that they can
be used to easily test the order of two revisions.

3. For each dirty object:

sioned tables in Cyclopath share the same ID sequence. This sim-
plifies future schema changes.

10In addition to conflict-detection benefits mentioned below, using
this natural number sequence which is independent for each object
makes it trivial to (a) determine whether a particular version of an
object is the first and (b) access subsequent and prior versions.

11We use before rather than ending because VSR and VBR form
a half-open interval: a row is valid from the instant revision VBR
is saved until the instant before revision VBR (which is the next
version’s VSR) is saved.

(a) Compare the object’s new version number vnew to the
most recent version number stored in the database for
that object, vstored. If vstored ≥ vnew, saving the revision
fails because there was an edit conflict; i.e., someone
else consumed the next version number – there are no
gaps in a object’s version number sequence.12

(b) Create a new row for the object and set data columns
to the new values, whether that particular attribute was
changed or not. Set Version to vnew, VSR to M , and
VBR to∞.

(c) Set the VBR of the prior version (i.e., version vnew − 1)
to M (unless the object was created in this revision, in
which case there is no prior version).

4.3 Global state and undoing
Undoing previous revisions remains important, and the three dif-

ferent techniques for effecting this are modified as follows. Man-
ually editing away undesirable content is essentially unchanged;
editors simply use the standard editing interface, which can now
view and edit multiple objects at once, to do so. Reverse-merging
is also essentially unchanged from the perspective of the state man-
agement system (see Figure 7 for an example of reverse-merging
under global state), but computing and then reversing a sequence
of edit operations may be more difficult, depending on the wiki’s
domain, and the presence of dependencies between objects may in-
crease the likelihood that the reversed operations cannot be applied
to the current state.

However, reverting raises additional complexities. First, which
objects should be reverted when revision N is reverted? The obvi-
ous choice is “all objects affected by revision N” – but what does
that mean? Strong dependencies between objects may mean that
objects which were not actually changed by revision N might be
affected. To illustrate this, we consider an example from Cyclopath.
Suppose that revision N splits an edge into two new edges adjacent
to a new node; then, revision N + 1 creates a third edge adjacent
to that node. If only the two edges directly altered by revision N
are deleted by an undo, the third edge created in revision N + 1
will be left dangling, attached to a now-nonexistent node. (This sce-
nario is plausible in Cyclopath when revisions that add new street
intersections are undone.)

12After such a failure, a robust implementation would perform ap-
propriate conflict resolution and then retry the revision.

68

Article
ID Version VSR VBR Deleted? Name Text

5555 1 21 23 no Mouse Mice have pointy noses.
6666 1 22 23 no Cat Cats are mammals.
7777 1 22 24 no Dog Dogs smell funny.
5555 2 23 25 no Mouse Mice have pointy noses that wiggle.
6666 2 23 24 no Cat Cats are cute mammals.
6666 3 24 25 no Cat Cats are cute mammals with whiskers.
7777 2 24 ∞ yes — —
5555 3 25 ∞ no Mouse Mice have pointy noses.
6666 4 25 ∞ no Cat Cats are mammals with whiskers.

Revision
ID

21
22
23
24
25

Figure 7: Figure 6 extended to include a new revision 25 which reverse-merges revision 23; cute was removed from “Cat” while that
wiggle was removed from “Mouse”. New data are highlighted in bold; note that the VBR of version 3 of “Cat” and version 2 of
“Mouse” were updated to 25. Contrast with Figure 8, which illustrates revision 23 being reverted instead.

Article
ID Version VSR VBR Deleted? Name Text

5555 1 21 23 no Mouse Mice have pointy noses.
6666 1 22 23 no Cat Cats are mammals.
7777 1 22 24 no Dog Dogs smell funny.
5555 2 23 25 no Mouse Mice have pointy noses that wiggle.
6666 2 23 24 no Cat Cats are cute mammals.
6666 3 24 25 no Cat Cats are cute mammals with whiskers.
7777 2 24 ∞ yes — —
5555 3 25 ∞ no Mouse Mice have pointy noses.
6666 4 25 ∞ no Cat Cats are mammals.

Revision
ID

21
22
23
24
25

Figure 8: Figure 6 extended to include a new revision 25 which reverts revision 23; “Cat” and “Mouse” were each reverted to their
respective version 1s. New data are highlighted in bold. Contrast with Figure 7, which illustrates revision 23 being reverse-merged.

In general, computing the set of objects affected by revision N
requires an arbitrarily complex domain-specific dependency walk-
ing procedure. In the above example, deciding what to do about the
dangling edge is hard; leaving it dangling means the graph remains
inconsistent, while deleting it destroys potentially unrelated work.
We argue that in such cases it is better to leverage the human knowl-
edge that drives the wiki in the first place: notify (with his or her
prior consent) the user who created revision N + 1 and let him or
her decide what to do.

Our current approach in Cyclopath is simple. First, we have not
yet implemented reverse merging, due mostly to limited personnel
resources. Second, our implementation of reverting assumes that
the set of objects indirectly affected by a given revision is empty.
In addition to the difficulties noted above, we hypothesize that sit-
uations which might warrant dependency walking are not actually
frequent enough to justify the considerable effort of discovering and
building it. Thus, our revert algorithm, illustrated in Figure 8, is:

1. Find the set of objects directly affected by revision N (i.e.,
VSR = N).

2. Find their immediately prior versions (i.e., VBR = N).

3. Create new versions containing that prior data (or synthesize
a deleted version, for objects created in revision N) and save
those as a new revision.

In summary, the techniques we outline in this section enable a
relatively straightforward implementation of wiki systems that sup-
port an arbitrary data model, retaining the core wiki properties such
as transparency and reversibility. We next turn to the re-introduction
of fine-grained access control.

5. WIKI 3.0: ACCESS CONTROL REDUX
The scheme outlined in the previous section is a significant ad-

vance over prior approaches, enabling wikis with arbitrary data mod-
els. However, we must go further. Its unit of access control and unit
of revision are the same, as in traditional wikis – but now that unit is
the entire database. This section explores how the unit of access can
be made smaller than the unit of revision, restoring the fine-grained
access control possible in traditional wikis.

In Cyclopath, we have a number of specific use cases motivating
this innovation, including:

• Sharing private routes with friends. Users wish to find or
build routes and then share them with others to view and/or
edit, perhaps a set of Cyclopath users or perhaps a set of peo-
ple to whom they e-mail a link.

• Private watch regions. Users wish to define map regions in
which they will be notified of editing activity; these are often
anchored by private locations (e.g., one’s home) and users
often simply wish to hide their interest from others.

• Private attributes (such as ratings or IDs mapping to other
databases) applied to any object the user can view, regardless
of edit access.

• Private layers. We are collaborating with local transportation
agencies who wish to create layers within the map, sharing
them with professional colleagues (who perhaps work in dif-
ferent agencies) but not the public.

This innovation raises a number of interesting challenges. This

69

section explores these challenges, the solutions we have identified,
and how we are implementing them in Cyclopath.

5.1 The mutability of access control
These challenges arise when access rights are revoked. That is,

if a user never could be removed from an object’s ACL once added,
then none the complexities we elaborate below come into play. This
property could be guaranteed as follows: if a user is to be removed
from an object’s ACL, instead of changing the ACL, create a copy
of the object with the new ACL and delete the old object.

However, recall that wikis retain all historical states of all objects.
Thus, this approach is untenable; while the old object would be re-
moved from the current view, it would still be available in historical
views under the old ACL. This would make it impossible to recover
from certain common mistakes.

For example, if an object containing personal information is made
public by mistake, it is ethically essential that this error be rectifiable
quickly, without invoking special procedures or asking for sysadmin
help. (Something similar already happens in Cyclopath on a fairly
regular basis – people enter points of interest called “home”, not
realizing the entire map is public.) Thus, access to objects, even
historical versions, must be revocable; ACLs must be fully mutable
and changes managed separately from the wiki state management
system. (As a consequence, a historical view for user U of revision
N may not be identical to how the wiki actually looked at the time
revision N was saved, because U ’s access may have changed.)

5.2 Undoing work
Normal editing is largely unaffected by an access control unit

smaller than the revision unit. The user interface only shows objects
that can be viewed, and it only enables editing on objects which can
be edited. Thus, by definition, revisions created by normal manual
editing affect only objects to which the user has edit access.

Rather, the complexities arise when undoing prior revisions, be-
cause undo revisions are concerned with a pre-defined set of objects
– those in the revision being undone. Some of these objects might
not be editable by the user performing the undo, either because the
undoing user is a different person with less access or because ac-
cess to some objects has been revoked. For example, suppose that
revision N , containing objects A and B, is saved by user U . User
U necessarily has access to both A and B, because he or she saved
a revision which changed both. Later, User V , who has access to
object A but not object B, wishes to undo revision N .

What happens to undo when one doesn’t have edit access to every
object in a revision? (In properly managed systems, this will be a
relatively infrequent occurrence, but as with all corner cases, it must
be handled in a reasonable way.) There are two options: don’t allow
the undo operation at all, or undo only changes to objects that can be
edited. The second – partial undo – is really the only viable option.
For example, if partial undo were not allowed, someone could make
a revision that included one private object and many vandalized
public objects, and no one could undo it. In any case, without partial
undo, users would likely emulate it (to a lesser degree of precision)
with manual editing.

In prior iterations of the wiki model, a revision can only be un-
done entirely or not at all. This is no longer the case. However, the
property that an undo that is undone forms a no-op remains – pro-
vided that the second undo is a complete, not partial, undo (i.e., the
user who made the second undo has edit access to every object in
the first undo).

The notion of partial undos is conceptually awkward with the
notion of atomic revisions. Thus, users should be warned before
(a) making access control changes that could create situations which

force partial undos and (b) saving a partial undo. In the latter case,
the system could offer to request that an administrator or someone
with greater access perform the undo.

5.3 Implementation overview
The core challenge of implementing access control in Cyclopath

is this. First, the Cyclopath data model contains a number of entities
which contain other entities (e.g., the transportation graph contains
edges, and each edge contains a number of attributes) – a natural
structure for making access decisions using recursion. However,
SQL databases, such as the one which stores the Cyclopath data, are
bad at recursion. Thus, in order to avoid a proliferation of special-
case queries, we are implementing a system which can check access
on any object by consulting only that object’s ACLs and no others.

Our implementation has two key parts. First, each object has four
different ACLs specifying (a) who can view the object if given a
direct link, (b) who can browse to the object or find it in searches,
(c) who can edit the object, and (d) who can change the object’s
ACLs. These ACLs are implemented with standard optimizations
such as user groups, storing each unique ACL only once, etc. (This
part is the basic access control of Dewan & Shen [5].)

Second, each object can constrain the ACLs of objects it con-
tains, perhaps transitively. (This part is the meta access control.) In
contrast with the work of Ahn and Sandhu [1], among others, our
constraints are between objects rather than user roles. For example,
the transportation graph can specify that the edges it contains must
be publically viewable and editable, and so must the attributes of
those edges. Or, the definition of attribute rating can specify that
all rating attributes must be private (visible and editable only by the
user who created them); also, this constraint can be given a higher
priority than the ones specified by the transportation graph layer,
enabling the private attribute on edges despite the layer’s prohibi-
tion of such attributes. Because these constraints are checked only
when objects are created or the constraints changed, the need for
recursion when checking access is eliminated.

In summary, by accepting the possibility of partial undo and lever-
aging basic and meta access control, wikis can implement both the
global state management needed by wikis with arbitrary data mod-
els and the fine-grained access control needed by wikis in the enter-
prise. We now conclude the paper and briefly explore future work.

6. DISCUSSION
Wikis exploded into the public consciousness with Wikipedia.

The encyclopedia’s embrace of a radical new philosophy, the wiki,
and its three core properties – inverting the publishing model, max-
imally open access, and transparent changes – led to an immense
and immensely useful information repository, almost as if by magic.
But the promise of the wiki model goes beyond encyclopedias. The
model is relevant and useful to any community which makes use of
information that is distributed among members of the community,
or which members can collectively find and synthesize. This is many
communities indeed. Why restrict the technology to relatively un-
structured information like text articles and to communities which
require only simple access control?

There is one key obstacle. Lack of global state management pre-
vented wikis from managing highly interdependent data, restricting
their use to contexts where no such dependencies existed or where
they could be kludged away. We solved this problem and detail our
solution. However, in doing so, we introduced another problem: be-
cause the unit of access control was still the same as the unit of
revision (as in traditional wikis), and this unit was now the entire
database, the traditional implementation of fine-grained access con-

70

trol in wikis was no longer tenable. We have solved this problem as
well; we outline an implementation of access control in wikis with
a unit of access smaller than the unit of revision.

Thus, this work advances wikis from a technology supporting
encyclopedias and other repositories of relatively independent ob-
jects to a technology supporting arbitrary data models in rich access
control contexts.

Yet there is more to be done. What will Wiki 4.0 look like? We
speculate that future wiki systems will continue to adapt innova-
tions which emerged first in version control systems, perhaps even
by building wikis on top of established VCSes.

For example, there is a need for branching – the ability to per-
sistently save in-progress work, with access to history, undo, and
all other wiki features, without affecting the main wiki. Use cases
include private collaboration on changes before merging them into
the main wiki, disruptive experimental edits inappropriate for the
main wiki, and all the other reasons branching is found in VCSes.
In fact, branching already happens in systems like Wikipedia. Users
copy articles, do work and get feedback on the copy, and then merge
the changes back to the main article. This is indeed branching, but
done manually. In particular, merging continuing work on the main
article into the copy is tedious and error-prone.

Another potential advance paralleling the development of VCSes
is distributed wikis. Users might not trust a single server or might
need to comply with organizational requirements on keeping certain
information behind the firewall. Distributed wikis could retain a
unified view of information split between different servers.

Finally, we close with the observation that this paper describes
techniques for making wikis both less simple and less open. We be-
lieve this is a positive step. First, we have identified new domains
where introducing the wiki model requires changes that make it
more complex. Like any software system, a wiki should be as sim-
ple as possible – yet no simpler. Thus, rather than forgoing these
opportunities, we argue that wikis should instead thoughtfully add
the necessary complexity.

Similarly, we have identified new domains that simply require
tighter access control than is consistent with the traditional wiki
philosophy. Some of these domains might ultimately be flexible
(for example, wiki software capable of matching a relatively closed
organizational culture could later be adjusted towards greater open-
ness, while wiki software that requires openness in order to function
would never be adopted in the first place), while some closed data is
uncontroversial (for example, personal data about individuals). Re-
gardless, it is difficult to enable judicious use of access control with-
out also enabling excessive or backward use. In both cases, greater
flexibility in simplicity and openness creates possibilities for apply-
ing the wiki model that would not otherwise be available.

7. ACKNOWLEDGEMENTS
We thank Michael Ludwig and Landon Bouma for their design

and implementation work on these issues. Andrea Forte provided
thoughtful feedback on [17], which developed into this paper’s intro-
duction. Anonymous reviewers provided important feedback. This
work is supported in part by NSF (IIS 05-34692 and IIS 08-08692).

8. REFERENCES
[1] Gail-Joon Ahn and Ravi Sandhu. Role-based authorization

constraints specification. ACM Trans. Inf. Syst. Secur.,
3:207–226, November 2000.

[2] Yochai Benkler. The Wealth of Networks: How Social
Production Transforms Markets and Freedom. Yale
University Press, 2006.

[3] Dan Cosley et al. Using intelligent task routing and
contribution review to help communities build artifacts of
lasting value. In Proc. CHI, 2006.

[4] Catalina Danis and David Singer. A wiki instance in the
enterprise: Opportunities, concerns and reality. In Proc.
CSCW, pages 495–504, 2008.

[5] Prasun Dewan and HongHai Shen. Flexible meta
access-control for collaborative applications. In Proc. CSCW,
pages 247–256, 1998.

[6] Sarah Elwood. Geographic information science: New
geovisualization technologies emerging questions and
linkages with GIScience research. Progress in Human
Geography, 2008.

[7] Martin Fowler. VersionControlTools, February 2010.
http://martinfowler.com/bliki/VersionControlTools.html.

[8] Jim Giles. Internet encyclopaedias go head to head. Nature,
438(7070):900–901, December 2005.

[9] Michael Goodchild. Citizens as sensors: The world of
volunteered geography. GeoJournal, 69:211–221, 2007.

[10] Jonathan Grudin and Erika Shehan Poole. Wikis at work:
Success factors and challenges for sustainability of enterprise
wikis. In Proc. WikiSym, 2010.

[11] Theo Haerder and Andreas Reuter. Principles of
transaction-oriented database recovery. ACM Comput. Surv.,
15:287–317, December 1983.

[12] Chor Pang Lo and Albert K.W. Yeung. Concepts and
Techniques of Geographic Information Systems. Prentice
Hall, 2nd edition, 2006.

[13] Sarah Manley. 100,000 wikis on Wikia, April 2010.
http://community.wikia.com/wiki/User_blog:
Sarah_Manley/100,000_wikis_on_Wikia.

[14] Sean A. Munson. Motivating and enabling organizational
memory with a workgroup wiki. In Proc. WikiSym, 2008.

[15] OpenStreetMap. Change rollback, August 2010.
http://wiki.openstreetmap.org/w/index.php?title=Change_
rollback&oldid=514591.

[16] Reid Priedhorsky. The Value of Geographic Wikis. PhD
thesis, University of Minnesota, August 2010.
http://reidster.net/pubs/thesis.pdf.

[17] Reid Priedhorsky. Wiki, absurd yet successful. In CHI 2011
Workshop on Crowdsourcing and Human Computation, 2011.

[18] Reid Priedhorsky et al. How a personalized geowiki can help
bicyclists share information more effectively. In Proc.
WikiSym, 2007.

[19] Reid Priedhorsky and Loren Terveen. The computational
geowiki: What, why, and how. In Proc. CSCW, 2008.

[20] Eric Raymond. Understanding version-control systems,
January 2008. http://www.catb.org/~esr/writings/
version-control/version-control.html.

[21] Patrick Thomson. Git vs. mercurial: Please relax, August
2008. http:
//importantshock.wordpress.com/2008/08/07/git-vs-mercurial/.

[22] William Tolone et al. Access control in collaborative systems.
ACM Computing Surveys, 37:29–41, March 2005.

[23] Wikimedia Foundation. Wikipedia, January 2011.
http://wikipedia.org/.

[24] Wikipedia. Protection policy, March 2011.
http://en.wikipedia.org/w/index.php?title=Wikipedia:
Protection_policy&oldid=417774228.

71

http://martinfowler.com/bliki/VersionControlTools.html
http://community.wikia.com/wiki/User_blog:Sarah_Manley/100,000_wikis_on_Wikia
http://community.wikia.com/wiki/User_blog:Sarah_Manley/100,000_wikis_on_Wikia
http://wiki.openstreetmap.org/w/index.php?title=Change_rollback&oldid=514591
http://wiki.openstreetmap.org/w/index.php?title=Change_rollback&oldid=514591
http://reidster.net/pubs/thesis.pdf
http://www.catb.org/~esr/writings/version-control/version-control.html
http://www.catb.org/~esr/writings/version-control/version-control.html
http://importantshock.wordpress.com/2008/08/07/git-vs-mercurial/
http://importantshock.wordpress.com/2008/08/07/git-vs-mercurial/
http://wikipedia.org/
http://en.wikipedia.org/w/index.php?title=Wikipedia:Protection_policy&oldid=417774228
http://en.wikipedia.org/w/index.php?title=Wikipedia:Protection_policy&oldid=417774228

