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ABSTRACT 

Very few studies have looked at repositories’ programming 

language survivability in response to forking conditions. A 

high number of repository programming languages does not 

alone ensure good forking performance. To address this 

issue and assist project owners in adopting the right 

programming language, it is necessary to predict 

programming language survivability from forking in 

repositories. This paper therefore addresses two related 

questions: are there statistically meaningful patterns within 

repository data and, if so, can these patterns be used to 

predict programming language survival? To answer these 

questions we analysed 47,000 forking instances in 1000 

GitHub projects. We used Euclidean distance applied in the 

K-Nearest Neighbour algorithm to predict the distance 

between repository file longevity and forking conditions. 

We found three pattern types (‘once-only’, intermittent or 

steady) and propose reasons for short-lived programming 

languages. 
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1. INTRODUCTION 
Programming language survivability can be predicted in 

different ways, with different evaluative methods 

generating different predictive results. Forking is 

sometimes ignored when predicting repositories’ 

programming language survivability in GitHub, as the 

GitHub forking function is an essential mechanism to assist 

open source (OS) developers to quickly code software with 

support of the internal and external community.  
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Whether a programming language can survive (perform) or 

not is highly dependent on forking performance. Each 

repository file is tied to a programming language that 

provides developers the freedom to copy and fork the file. 

Forking features include speed, size and type. Speed refers 

to the forking period in days, weeks or months; size refers 

to the number of developers who fork the file; and type 

refers to source code file characteristics, such as 

programming language, license compliance, etc 

However forking has some challenges; for example, forking 

performance could be a “high demand but low supply”, 

“low demand and supply” or “low demand but high supply” 

situation. For example, “high demand but low supply” may 

reflect using a popular programming language but the 

repository is not forked by many developers. Conversely, 

“low demand and supply” may be a niche programming 

language, developers and market, e.g., using R language for 

statistics and data analytics. “Low demand but high supply” 

may be a new and popular programming language – Swift, 

Objective C – that developers would be more likely to 

adopt because of language migration.  

It is unclear what causes uncertainty in low or high forking 

count, affecting programming language survivability. Our 

research therefore focuses on programming language 

survivability. This research is critical as an increasing 

number of repository files are adopted to sustain 

programming languages, but creators may not be able to 

find the right developers to fork their language. Further, 

there is a recent decline in forking as correct programming 

languages are not being adopted onto repository files. To 

tackle these issues, our goal in this paper is to report 

evidence of the effect of forking in programming language 

repository files. 

We are the first researchers to analyse a large forking 

dataset for developer forking behaviour based on repository 

file characteristics to predict sustainable programming 

language survivability. We are also the first to adopt a 

machine learning method, K-Nearest Neighbour (KNN), to 

predict sustainable programming language survivability and 

introduce a robust method to evaluate OS file forking 

success ability.  

Here Section 1 provides the research overview; Sections 2 

and 3 describe forking, patterns and programming language 

importance; Section 4 explains the KNN and Euclidean 

Distance methods and the GitHub dataset; and Section 5 



outlines the programming language repository file 

categorisation and fork pattern classifiers. Results are 

presented in Sections 6, and 7 , with discussion, conclusions 

and future work presented in Section 8. 

2. CONCEPT OF FORKING  

Forking can be defined in different ways. Nyman and 

Mikkonen [1–3] defined it in a project context, where 

developers copy source code from one software package to 

develop an independent project. Ikuine and Fujita [4] 

defined project forking as the continuous development of a 

software. Fung, Aurum and Tang [5] defined social forking 

to identify relationships within communities, and studied 

how forks are used to facilitate OS software development. 

In our paper, we define language forking as a repository 

language that is copied by other developers. 

There are also different ways to define programming 

language success, with programming language inter-

operability performance being a major contributor to 

success. Despite this, most languages are not interoperable 

[6–8]. Language needs and developer motivation are two 

important factors when investigating when and why 

developers may fork a programming language file. For 

example, some developers may fork a language because it 

is a new language that complies with an original language, 

while other developers may fork a language because it is a 

subset of the original language, with features added, 

removed or amended. As such, we need to understand 

developer forking motivation. There are currently a broad 

range of perspectives on OS developer motivation, ranging 

from individual to communities, and fork consequences on 

projects and organisations.  

Although a variety of research methods have been adopted 

to predict OS software popularity, sustainability and 

survivability [1–6,9–16], these methods are less useful for 

predicting programming language forking survivability. 

These research methods include surveys, interviews, 

content analysis and empirical studies that are subjective 

and potentially biased. For example, data samples were not 

large, reducing accuracy; data analyses and interpretation 

could be subjective or biased; and the study designs were 

unable to handle large data sets, unlike machine learning 

techniques that work effectively with an abundance of data 

to leverage for training and testing.  

2.1 Understanding Open Source Forking 

To eliminate the disparity view of forking, a group of 

researchers [12,17] systematically reviewed the literature 

[18,19] and performed a content analysis [20,21] to analyse 

OS developers’ forking motivation, interpretation, category 

and consequence. They found forking can be categorised 

into seven types: OS; project; software; social; code; 

programming language; and file repository file forking. The 

categories are outlined below and are quite similar apart 

from different fork behaviours.  

2.1.1 Open source forking  

The early 1990s saw a plethora of research on OS developer 

motivation. Krogh and colleagues [15] reviewed seven 

years’ of publications across 40 researchers to identify 

reasons that motivated OS developers to voluntarily spend 

time fixing and contributing source code. They classified 

these into intrinsic, internalised intrinsic and extrinsic 

motivation. Intrinsic motivation included ideology, 

altruism, kinship and fun; internalised intrinsic included 

reputation, reciprocity, learning and own-use; and extrinsic 

included being paid or career building.  

2.1.2 Project forking  

Nyman and Mikkonen [1–3] proposed that a project fork 

occurs when software developers copy source code from 

one software package and use it to develop an independent 

project. Forking therefore produces an independent version 

of the system that is maintained separately from its origin. 

They quantified project forking as the number of original 

projects forked by developers, comparing the number of 

original projects versus forked projects in GitHub.  

They looked at forking behaviour in the context of forked 

project survivability. Researchers are still seeking to further 

understand how forking impacts the original forked project 

and Nyman and Mikkonen provide real-life examples of 

current high profile OS projects that either started from a 

fork or are common targets for forking [1–3]. 

2.1.3 Software forking  

Ikuine and Fujita defined forking as the continuous 

development of software [4]; that is, the software continues 

to be developed by the original developer or other 

developers. When other developers copy the file, the 

original developer must share the source code. Software 

forking focuses on the product itself, such as Microsoft or 

Facebook software, and email applications. 

2.1.4 Social forking 

In their study of nine JavaScript development communities 

in GitHub, Fung, Aurum and Tang defined social forking as 

the highest amount of forks required to identify 

relationships within them, and studied how forks are used to 

facilitate OS software development [5]. They analysed 

approximately 8,000 forks from almost 7,000 developers 

across different communities, with the most active 

developers making contributions to multiple communities.  

Their research indicated that forks are actively used by the 

development community to fix defects and experiment with 

new features. What separates forks from normal branching 

is that changes do not need to be promoted in the original 

upstream project and can live in a separate fork that can still 

change and improve, independent of the original project. 

Further, a branch is that a fork can originate from either a 

subset of the forked predecessor’s artefacts or from multiple 

predecessors’ artefacts. A branch in turn is a copy of all the 

predecessor’s artefacts [5].  



2.1.5 Code forking  

Code forking is defined as a forked project copied from the 

existing code base and moved in a direction different from 

the project leadership. Forking the code base allows 

developers to leverage existing functionality while also 

addressing new requirements. Although flexible, code 

forking has inherent difficulties, such as maintenance, 

evolution, and social factors within the development 

community. A broad definition of a code fork is when the 

code from an existing program serves as a fork it is the 

basis for a new version of the program [4,14,22]; more 

specifically, a version that seeks to continue to exist apart 

from the original. 

2.1.6 Programming language forking  

Chua [11–12,17] examined language forking from the 

perspective of programming language adoption in projects 

by project owners. She found three projects where Apache, 

Mozilla and Ubuntu JavaScript languages were actively 

forked by developers.  

2.1.7 File repository forking  

A file repository fork is mainly used to make contributions 

to original repositories and is beneficial for the OS software 

community [6]. Motivating reasons for developers to fork 

repositories include submitting pull requests, fixing bugs, 

adding new features and keeping copies. A repository 

written in a developer’s preferred programming language is 

more likely to be forked and developers mostly fork 

repositories from reliable creators. Attractive repository 

owners include organisations, as they have more followers. 

2.2 Forking patterns  

Regardless of forking type, there are three forking patterns 

that can be identified in GitHub: single, or once only; 

intermittent; and steady. A single fork pattern refers to 

developers who fork programming language repository files 

once a month and then not at all in consecutive months. 

Intermittent refers to forking over some months, then not in 

others, then again in later months. A steady fork pattern 

refers forking files consistently for a defined period, such as 

every month for 12 months (Table I). 

TABLE I.  FORK PATTERN 

 

3. SOFTWARE SURVIVAL AND PROGRAMMING 
LANGUAGE SURVIVAL IMPORTANCE  

Many critical factors have been discussed in the literature 

on success of closed source language development [23] but 

a focus on programming language assessment must 

continue in the new OS software development culture. Not 

only can we expect voluminous source codes to be 

contributed by developers but also an increase of new OS 

programming languages added, driving competition for 

programming languages survival. 

The survival of a programming language is critical to a 

repository and a project owner, as a language without 

forking is equivalent to no new source code, implying no 

development, potentially as the chosen programming 

language failed to produce source code that was ready in 

time to develop and deliver a software product. In other 

words, it is difficult to develop a programming language 

used in a repository file quickly and submit it to a 

production environment. The longer a repository file 

remains in GitHub without developer interest, the greater 

the likelihood of termination once the public repository file 

expires. It is therefore a waste of development time and 

effort to create that repository file.  

A surviving programming language is one that is more open 

to interoperability and integration to build ecosystems and 

emerging technology agility and mobility. A surviving 

programming language can also reduce the risk of replacing 

another programming language and developing other 

components.  

Ranking of popular or sustainable programming languages 

is one way to assure developers a language is reliable to 

adopt. Unfortunately, however, programming language 

popularity, sustainability and successability assessments 

vary across companies, projects, platforms to platform, and 

communities [6,14], making comparing results difficult.  

There is no one method to assess programming language 

popularity and rank importance regardless of how the 

language used and adopted. There is limited literature on 

assessing programming language popularity, success and 

sustainability by measuring fork performance as, to date, 

forking has not been instrumental as a viable process for 

time to production on repository files.  

Since forking forms an integral part of OS software 

development, ranking importance of programming 

languages is relevant. A programming language forking 

rank result could be of benefit when considering and 

selecting the right programming language to adopt, use and 

fork in a platform, and obtain the right community support. 

However, ranking programming language forking success 

or popularity is not an easy task. There are a number of 

factors to consider, including the target platform, elasticity 

of a programming language, topic of interest, time to 

production, programming language fork performance, and 

community support. Most importantly, both forking and 

programming language are time-independent and assessing 

them can be daunting as forking fluctuates inconsistently. 

4. SURVIVABILITY PREDICTION USING THE K 
NEAREST NEIHBOUR METHOD 

The K-Nearest Neighbour (KNN) method is one of the 

most popular non-parametric classification algorithms 

because it is simple, effective, and more accurate than many 

other classification algorithms [22,24–28]. The KNN 

Respository Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Fork Pattern

Rick/dotfiles 1 0 0 0 0 0 0 0 0 0 0 0 Fork Once Only 

Droogans/unm

aintainable-

code 4 0 4 2 4 0 2 69 3 3 2 2 Fork Intermittent 

Electron/electr

on 287 260 266 198 229 225 191 190 164 223 183 175 Fork Steady



method is used in data mining and statistics because of its 

simple implementation and significant classification 

performance produces more accurate results than many 

other algorithms [25,29].  

It was first introduced in 1951 by Fix and Hodges in their 

unpublished report for the US Air Force School of Aviation 

Medicine. In 1967 Cover and Hart formalised the original 

idea and discovered the main properties of this method [22]. 

The KNN method can also handle mixed Euclidean 

distance, adopted in this paper.  

We aimed to predict the lifespan of a programming 

language through forking using KNN, given forks range 

from a few months to several months. The algorithm 

calculates Euclidean distance from the 12 months of the 

forking period based on the forking pattern categories to 

evaluate which types of programming language repository 

file are short- or long-lived by the minimum distance. We 

chose a 12-month period rather than days or weeks as we 

did not find a significant number of forked changes on 

repositories over the shorter time-frame. We used the three 

patterns defined above: single, intermittent and steady. 

According to the Euclidean distance formula, the distance 

between two points in a plane with coordinates (x, y) and 

(a, b) is given by 

dist((x, y), (a, b)) = √(x – a)² + (y – b)² 

and the a, b, x and y variables must be numeric. As such, 

we converted non-numeric variables from a forking dataset 

downloaded from GitHub (January–December 2017) into 

numeric variables (Table II). We adopted one of the queries 

from [30] into the Google Big Query using the Select 

Statement (see below, highlighted the condition to retrieve 

only created forked repositories. We downloaded 1,000 

repository files from GitHub, randomly categorised them 

alphabetically.  

SELECT events.repo.name AS events_repo_name, 

COUNT(DISTINCT events.actor.id) AS events_actor_count 

FROM (SELECT * FROM TABLE_DATE_RANGE 

([githubarchive:day.],TIMESTAMP('2017-01-

01'),TIMESTAMP('2017-12-31'))) AS events 

WHERE events.type = 'ForkEvent' 

 

TABLE II.  VARIABLES DEFINED FOR PROGRAMMING LANGUAGE SURVIVABILITY 

Name Description Source Variable Typea Binary 

Events_repo_name A repository file name  GitHub x1 C N/A 

Repo_type  Own creation (from the description of the source code link) NA x2 C N/A 

Prog Lang Name  Programming Language 1. Python, 2. C++, 3. Java, 4. C, 5. C#, 

6. PHP, 7. R, 8. JavaScript, 9. Go, 10. Assembly 

GitHub 

[16 ] 

x3..x13 C 1 Yes, 0 

No 

Open Source 

recognised license  

Official Open Source license : BSD 3-Clause "New" or 

"Revised" license,BSD 2-Clause "Simplified" or "FreeBSD" 

license,GNU General Public License (GPL),GNU Library or 

"Lesser" General Public License (LGPL),MIT 

license,Mozilla,Common Development and Distribution License 

(CCDL) Public License 2.0,Eclipse Public License 

[15] x14..x21 C 1 Yes, 0 

No 

Open source 

technology  

Open Source Technology refers to OpenStack, Progressive Web 

Apps, Rust, R, the cognitive cloud, artificial intelligence (AI), 

the Internet of Things 

[14] x22..x32 C 1 Yes, 0 

No 

Fork 12 surviving 

months  

Fork detected every month from Jan to Dec NA x33 B 1 Yes, 0 

No 

Environment 

compliance 

satisfy environment compliance (sustainable top 10 

programming language, recongised license, open source 

technology  

NA x34 B 1 Yes, 0 

No 

Forking month  January to December NA x35..x47 N N/A 

a Binary, B; Character, C; Numeric, N. 

To satisfy environment compliance around product, 

programming language and license, we referenced Open 

Source Technology’s list of top products developers are 

interested in [31] and top officially recognised OS licenses 

[32], and IEEE’s top programming languages and licenses 

adopted in OS repository files [33], namely Python, C, 

Java, C, C#, PHP, R, JavaScript, Go and Assembly.  

A repository file name is a name given to uniquely identify 

a piece of source code that stored in the GitHub. Due to 

some filenames non-interpretable, the conversion from 

characters into binary is difficult. For instance a repository 

file name in GitHub labelled as “1ppm/1ppmLog”. For all 

variables except the file repository file name, attributes with 

text characters were converted into binary numbers (1=yes, 

0=no); e.g., programming language names, repository file 

and license. For instance, for the programming language 

JavaScript, 1 indicated JavaScript was used and 0 indicated 

it was not JavaScript.  

In total, there were 47 attributes, with two added to 

determine duration of programming language repository file 

survival (in months) and how many repository files 

complied with the criteria published in [31–32].  



Our definition of a long-lived programming language 

repository file was based on detecting a consecutive 12-

month forking performance; short-lived was no fork counts 

detected in the 12-month period. For example, a JavaScript 

social media repository file was predicted to have a short-

lived outcome as there was no fork in the 12-month period 

versus a Python machine learning repository file was 

predicted to be long-lived, having visible monthly forking.  

In total, 47,000 forking data over the 12-month period were 

evaluated for Euclidean distance, using the three patterns, to 

determine which programming language repository files 

were short- or long-lived by the minimum distance. 

5. PROGRAMMING LANGUAGE REPOSITORY FILE 
CATEGORISATION AND FORK PATTERN CLASSIFIERS 

Categorising the forking dataset into single, intermittent, or 

steady patterns revealed nine types of programming 

language repository files based on environment compliance 

and fork performance (Table III).  

TABLE III.  FORKING PATTERNS  

Forking 

Pattern 

Programming Language Repository Files  

Once Only  Specific Respository File (SPF) 

Intermittent  Specific repository file met official licence 

compliance and adopted a modern 

sustainable programming language 

(SRFMSPL)  

Specific repository file met official licence 

compliance  (SRFOL) 

Specific repository file met official licence 

adopted a traditional sustainable 

programming language (SRFOLTSPL) 

Specific repository file adopted a traditional 

sustainable programming language 

(SRFTSPL) 

Steady  Specific repository file that did not meet the 

full environment licence but has healthy fork 

(SRFHF) 

Specific repository file met official licence 

compliance that has healthy fork 

(SRFOLHF) 

Specific repository file met official licence 

compliance and adopted a modern 

sustainable programming Language that has 

healthy fork (SRFOLMSPLHF) 

Specific repository file adopted a traditional 

sustainable programming language that has 

healthy fork (SRFTSPLHF) 

TABLE IV.  CATEGORISING PROGRAMMING LANGUAGE 

RESPOSITORIY FILE FORKS AS SHORT- OR LONG-LIVED 

Short-lived  Long-lived 

Abbreviation  # Abbreviation  # 

SPF  138 SRFOLHF 32 

SRFOL 104 SRFHF 20 

SRFTSPL 172 SRFTSPLHF 42 

SRFOLTSPL 347 SRFOLMSPLHF 5 

SRFMSPL 5 SRFOLTSPLHF 107 

SRFOLMSPLHF 28 

Total  794 Total  206 

 

Fig. 1. Categorising programming language repository file forks 

as short- or long-lived.  

6. CLASSIFIER RESULTS  

The results of using Euclidian distance to categorise the 

programing language repository file forks are shown in 

Table IV and Figure 1. A high number were short-lived 

(79.4%) and only a small number were long-lived (20.6%). 

Our results identified some non-sustainable programming 

languages that lacked environment compliance survived as 

long as sustainable programming languages that met 

environment compliance: 94/206 repository files did not 

completely meet environment compliance but survived 

well, e.g., CSS, Kotlin, Emacs Lisp and Jupiter Notebook. 

Long fork survival could be due to a developer community 

supporting an OS technology trend; e.g., machine learning, 

web applications or android operating systems.  

We found the majority of sustainable programming 

languages were short-lived because of low or no license 

compliance. The data revealed many developers chose a 

low compliance license – development mountain copyright, 

CC BY NC SA 4.0, Creative Commons Attribution 4.1, 

WTFPL, or Educational Content License – however, as 

these licenses are less popular and/or have low compliance 

some developers are hesitant to contribute [32]. In contrast, 

long-lived programming language repository files aligned 

with the top 10 sustainable programming languages [33]. 

Nevertheless, some repository files that adopted 

programming languages not in the top 10 – such as Python, 

PHP, Swift, Shell and Ruby – also survived well.  

6. K-NEAREST NEIGHBOUR RESULTS  

The results of the KNN method are summarised in Table V, 

shows the classification of programming language 

repository files by KNN/ Euclidean Distance, and 

illustrated with four case studies below. 
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TABLE V.  CATEGORISING PROGRAMMING LANGUAGE 

REPOSITORY FILES SORTED BY EUCLIDEAN DISTANCE 

Classification 

File 

Count 

Euclidean 

Distance Rank 

SRFOTLSPLHF/ 

SRFOLMSPLHF 

113 0 1 

SRFTSPLHF 41 1 109 

SRFOLHF/ 

SRFOTLSPLHF 

33 1 113 

SRFOLSPL/ 

SRFOLMSPL 

374 1.4 187 

SRFHF 20 2 562 

SRF 1 3.2 566 

SRFSPL/SRFOL 281 2.2 582 

SRF 137 3.2 863 

TABLE VI.  ENVIRONMENT COMPLIANCE 

Full 

compliance  Long-lived Short-lived Total 

Yes 111 (TP) 94 (FP) 205 

No 0 (FN) 795 (TN) 795 

 111 889 1,000 

6.1 Case One 

A programming language repository file is found to 

associate with the following properties: one of the top ten 

OS technologies [31], met legitimate license compliance 

[32], adopted a sustainable programming language [33], 

and displayed monthly forking over the last 12 months. 

This file is predicted to be a long-lived surviving 

programming language file with healthy forking. Our 

results predict SRFOTLSPLHF or SRFMTLSPLHF would 

fall under this category.  

6.2 Case Two  

A programming language repository file is found not to 

associate with one of the following properties: one of the 

top ten OS technologies [31], met legitimate license 

compliance [32], adopted a sustainable programming 

language [33], and displayed monthly forking over the last 

12 months. This file is predicted to be a long-lived 

surviving programming language file with healthy forking. 

Our results predict SRFHF would fall under this category. 

6.3 Case Three 

A programming language repository file is found not to 

associate with more than one of the following properties: 

one of the top ten OS technologies [31], met legitimate 

license compliance [32], adopted a sustainable 

programming language [33], and did not display monthly 

forking over the last 12 months. This file is predicted to be 

a lower surviving programming language. Our results 

predict SRF would fall under this category. 

6.4 Case Four 

A programming language repository file is found not to 

associate with more than one of the following properties: 

one of the top ten OS technologies [31], met legitimate 

license compliance [32], adopted a sustainable 

programming language [33], but displayed monthly forking 

over the last 12 months. This file is predicted to be a lower 

surviving programming language. Our results predict 

SRFOL would fall under this category. 

7. EVALUATION  

In this paper, we proposed evaluating sensitivity and 

specificity to describe test performance, as these parameters 

remain true regardless of the population of programming 

language repository files to which the test is applied.  

Definitions of environment compliance parameters are 

presented in Table VI, where: true positive (TP) is the 

number of programming language repository files that met 

environment compliance and were classified as long-lived; 

false positive (FP) is the number that met environment 

compliance and were mistakenly classified as short-lived; 

true negative (TN) is the number that did not meet 

environment compliance and were classified as long-lived; 

and false negative (FN) is the number that did not meet 

environment compliance and were mistakenly classified as 

short-lived. 

For this study, we divided the data into training (80%) and 

testing (20%) samples. We used the KNN method to 

classify the class of the repository files then calculated the 

Euclidean distance between the forking period and forking 

pattern. After determining the parameter k and running the 

KNN algorithm, accuracy was calculated using sensitivity, 

specificity and precision. The formulas of the four measures 

are outlined below. 

Accuracy refers to the proportion of true results among the 

total number of positive and negative cases examined. 

Accuracy = TP+TN/(TP+TN+FP+FN) 

For this study, accuracy is 111+795/(111+795+94+0)= 

0.906 (90.6%). 

Sensitivity is the proportion of long-lived programming 

language repository files that meet full environment 

compliance, and specificity is the proportion of short-lived 

programming language repository files that meet full 

environment compliance. Hence, the formula is 

Sensitivity = TP/TP+FN 

Specificity = TN/TN+FP 

For this study, sensitivity is 111/111+0=1 (1%) and 

specificity is 795/795+94=0.894 (89.4%). 

Precision is the ratio of correctly predicted positive 

observations to the total predicted positive observations; 

that is, of all programming repository files that appeared to 

survive, how many actually survived? High precision 

therefore relates to a low false positive rate. 

Precision = TP/TP+FP 

For this study, precision is 111/111+94=0.542 (54.2%).  

Figure 2 summarises all four metrics. 



 

Fig. 2. Evaluative results comparison of the dataset.  

8. DISCUSSION 

Figure 1 highlights that there are less long-lived 

programming language repository files than short-lived. For 

a programming language repository file to survive it must 

satisfy environment compliance properties; the data reveal 

most do not comply and are therefore short-lived. In other 

words, many project developers or owners who created 

repository files may have ignored, or failed to pay attention 

to, environment compliance factors, such as technology 

trends and licensing. 

Table VI is a statistical overview of programming language 

repository file lifespan and Figure 2 is an overview of the 

test result accuracy showing a breakdown of accuracy, 

sensitivity, specificity and precision. Our findings reveal 

that it is necessary for developers to pay attention to 

environment compliance before developing a repository file 

if they want to ensure healthy forking and file survivability.  

The predictive results help us to better categorise 

developers’ motivations for forking. The existing literature 

identified seven categories of forking: OS, project, 

software, social, code, programming language and 

repository. Our data show long-lived forked programming 

language repositories that satisfy environment compliance 

are potentially related to social, programming language and 

repository forking. In contrast, short-lived forked 

programming languages that are environment compliant are 

related to code, OS and project forking.  

Our future work in this area will focus on introducing new 

environment compliance variables to fast-growing project 

code that is forked from very large-scale programming 

languages with boundary conditions. In addition, we will 

evaluate which machine learning method can accurately 

and reliably predict fork patterns for short-lived and long-

lived programming languages.  
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