
Predicting Open Source Programming Language

Repository File Survivability From Forking Data

Bee Bee Chua, Ying Zhang

University of Technology, Sydney, Centre for Artificial Intelligence

Sydney, Australia

ABSTRACT

Very few studies have looked at repositories’ programming

language survivability in response to forking conditions. A

high number of repository programming languages does not

alone ensure good forking performance. To address this

issue and assist project owners in adopting the right

programming language, it is necessary to predict

programming language survivability from forking in

repositories. This paper therefore addresses two related

questions: are there statistically meaningful patterns within

repository data and, if so, can these patterns be used to

predict programming language survival? To answer these

questions we analysed 47,000 forking instances in 1000

GitHub projects. We used Euclidean distance applied in the

K-Nearest Neighbour algorithm to predict the distance

between repository file longevity and forking conditions.

We found three pattern types (‘once-only’, intermittent or

steady) and propose reasons for short-lived programming

languages.

Author Keywords

Programming language, survivability, forking, open source,

K-Nearest Neighbour, Euclidean distance, prediction

ACM Classification Keywords

Programming language, survivability, forking, open source,

K-Nearest Neighbour, Euclidean distance, prediction

1. INTRODUCTION
Programming language survivability can be predicted in

different ways, with different evaluative methods

generating different predictive results. Forking is

sometimes ignored when predicting repositories’

programming language survivability in GitHub, as the

GitHub forking function is an essential mechanism to assist

open source (OS) developers to quickly code software with

support of the internal and external community.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

OpenSym '19, August 20–22, 2019, Skövde, Sweden

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6319-8/19/08…$15.00

https://doi.org/10.1145/3306446.3340827

Whether a programming language can survive (perform) or

not is highly dependent on forking performance. Each

repository file is tied to a programming language that

provides developers the freedom to copy and fork the file.

Forking features include speed, size and type. Speed refers

to the forking period in days, weeks or months; size refers

to the number of developers who fork the file; and type

refers to source code file characteristics, such as

programming language, license compliance, etc

However forking has some challenges; for example, forking

performance could be a “high demand but low supply”,

“low demand and supply” or “low demand but high supply”

situation. For example, “high demand but low supply” may

reflect using a popular programming language but the

repository is not forked by many developers. Conversely,

“low demand and supply” may be a niche programming

language, developers and market, e.g., using R language for

statistics and data analytics. “Low demand but high supply”

may be a new and popular programming language – Swift,

Objective C – that developers would be more likely to

adopt because of language migration.

It is unclear what causes uncertainty in low or high forking

count, affecting programming language survivability. Our

research therefore focuses on programming language

survivability. This research is critical as an increasing

number of repository files are adopted to sustain

programming languages, but creators may not be able to

find the right developers to fork their language. Further,

there is a recent decline in forking as correct programming

languages are not being adopted onto repository files. To

tackle these issues, our goal in this paper is to report

evidence of the effect of forking in programming language

repository files.

We are the first researchers to analyse a large forking

dataset for developer forking behaviour based on repository

file characteristics to predict sustainable programming

language survivability. We are also the first to adopt a

machine learning method, K-Nearest Neighbour (KNN), to

predict sustainable programming language survivability and

introduce a robust method to evaluate OS file forking

success ability.

Here Section 1 provides the research overview; Sections 2

and 3 describe forking, patterns and programming language

importance; Section 4 explains the KNN and Euclidean

Distance methods and the GitHub dataset; and Section 5

outlines the programming language repository file

categorisation and fork pattern classifiers. Results are

presented in Sections 6, and 7 , with discussion, conclusions

and future work presented in Section 8.

2. CONCEPT OF FORKING

Forking can be defined in different ways. Nyman and

Mikkonen [1–3] defined it in a project context, where

developers copy source code from one software package to

develop an independent project. Ikuine and Fujita [4]

defined project forking as the continuous development of a

software. Fung, Aurum and Tang [5] defined social forking

to identify relationships within communities, and studied

how forks are used to facilitate OS software development.

In our paper, we define language forking as a repository

language that is copied by other developers.

There are also different ways to define programming

language success, with programming language inter-

operability performance being a major contributor to

success. Despite this, most languages are not interoperable

[6–8]. Language needs and developer motivation are two

important factors when investigating when and why

developers may fork a programming language file. For

example, some developers may fork a language because it

is a new language that complies with an original language,

while other developers may fork a language because it is a

subset of the original language, with features added,

removed or amended. As such, we need to understand

developer forking motivation. There are currently a broad

range of perspectives on OS developer motivation, ranging

from individual to communities, and fork consequences on

projects and organisations.

Although a variety of research methods have been adopted

to predict OS software popularity, sustainability and

survivability [1–6,9–16], these methods are less useful for

predicting programming language forking survivability.

These research methods include surveys, interviews,

content analysis and empirical studies that are subjective

and potentially biased. For example, data samples were not

large, reducing accuracy; data analyses and interpretation

could be subjective or biased; and the study designs were

unable to handle large data sets, unlike machine learning

techniques that work effectively with an abundance of data

to leverage for training and testing.

2.1 Understanding Open Source Forking

To eliminate the disparity view of forking, a group of

researchers [12,17] systematically reviewed the literature

[18,19] and performed a content analysis [20,21] to analyse

OS developers’ forking motivation, interpretation, category

and consequence. They found forking can be categorised

into seven types: OS; project; software; social; code;

programming language; and file repository file forking. The

categories are outlined below and are quite similar apart

from different fork behaviours.

2.1.1 Open source forking

The early 1990s saw a plethora of research on OS developer

motivation. Krogh and colleagues [15] reviewed seven

years’ of publications across 40 researchers to identify

reasons that motivated OS developers to voluntarily spend

time fixing and contributing source code. They classified

these into intrinsic, internalised intrinsic and extrinsic

motivation. Intrinsic motivation included ideology,

altruism, kinship and fun; internalised intrinsic included

reputation, reciprocity, learning and own-use; and extrinsic

included being paid or career building.

2.1.2 Project forking

Nyman and Mikkonen [1–3] proposed that a project fork

occurs when software developers copy source code from

one software package and use it to develop an independent

project. Forking therefore produces an independent version

of the system that is maintained separately from its origin.

They quantified project forking as the number of original

projects forked by developers, comparing the number of

original projects versus forked projects in GitHub.

They looked at forking behaviour in the context of forked

project survivability. Researchers are still seeking to further

understand how forking impacts the original forked project

and Nyman and Mikkonen provide real-life examples of

current high profile OS projects that either started from a

fork or are common targets for forking [1–3].

2.1.3 Software forking

Ikuine and Fujita defined forking as the continuous

development of software [4]; that is, the software continues

to be developed by the original developer or other

developers. When other developers copy the file, the

original developer must share the source code. Software

forking focuses on the product itself, such as Microsoft or

Facebook software, and email applications.

2.1.4 Social forking

In their study of nine JavaScript development communities

in GitHub, Fung, Aurum and Tang defined social forking as

the highest amount of forks required to identify

relationships within them, and studied how forks are used to

facilitate OS software development [5]. They analysed

approximately 8,000 forks from almost 7,000 developers

across different communities, with the most active

developers making contributions to multiple communities.

Their research indicated that forks are actively used by the

development community to fix defects and experiment with

new features. What separates forks from normal branching

is that changes do not need to be promoted in the original

upstream project and can live in a separate fork that can still

change and improve, independent of the original project.

Further, a branch is that a fork can originate from either a

subset of the forked predecessor’s artefacts or from multiple

predecessors’ artefacts. A branch in turn is a copy of all the

predecessor’s artefacts [5].

2.1.5 Code forking

Code forking is defined as a forked project copied from the

existing code base and moved in a direction different from

the project leadership. Forking the code base allows

developers to leverage existing functionality while also

addressing new requirements. Although flexible, code

forking has inherent difficulties, such as maintenance,

evolution, and social factors within the development

community. A broad definition of a code fork is when the

code from an existing program serves as a fork it is the

basis for a new version of the program [4,14,22]; more

specifically, a version that seeks to continue to exist apart

from the original.

2.1.6 Programming language forking

Chua [11–12,17] examined language forking from the

perspective of programming language adoption in projects

by project owners. She found three projects where Apache,

Mozilla and Ubuntu JavaScript languages were actively

forked by developers.

2.1.7 File repository forking

A file repository fork is mainly used to make contributions

to original repositories and is beneficial for the OS software

community [6]. Motivating reasons for developers to fork

repositories include submitting pull requests, fixing bugs,

adding new features and keeping copies. A repository

written in a developer’s preferred programming language is

more likely to be forked and developers mostly fork

repositories from reliable creators. Attractive repository

owners include organisations, as they have more followers.

2.2 Forking patterns

Regardless of forking type, there are three forking patterns

that can be identified in GitHub: single, or once only;

intermittent; and steady. A single fork pattern refers to

developers who fork programming language repository files

once a month and then not at all in consecutive months.

Intermittent refers to forking over some months, then not in

others, then again in later months. A steady fork pattern

refers forking files consistently for a defined period, such as

every month for 12 months (Table I).

TABLE I. FORK PATTERN

3. SOFTWARE SURVIVAL AND PROGRAMMING
LANGUAGE SURVIVAL IMPORTANCE

Many critical factors have been discussed in the literature

on success of closed source language development [23] but

a focus on programming language assessment must

continue in the new OS software development culture. Not

only can we expect voluminous source codes to be

contributed by developers but also an increase of new OS

programming languages added, driving competition for

programming languages survival.

The survival of a programming language is critical to a

repository and a project owner, as a language without

forking is equivalent to no new source code, implying no

development, potentially as the chosen programming

language failed to produce source code that was ready in

time to develop and deliver a software product. In other

words, it is difficult to develop a programming language

used in a repository file quickly and submit it to a

production environment. The longer a repository file

remains in GitHub without developer interest, the greater

the likelihood of termination once the public repository file

expires. It is therefore a waste of development time and

effort to create that repository file.

A surviving programming language is one that is more open

to interoperability and integration to build ecosystems and

emerging technology agility and mobility. A surviving

programming language can also reduce the risk of replacing

another programming language and developing other

components.

Ranking of popular or sustainable programming languages

is one way to assure developers a language is reliable to

adopt. Unfortunately, however, programming language

popularity, sustainability and successability assessments

vary across companies, projects, platforms to platform, and

communities [6,14], making comparing results difficult.

There is no one method to assess programming language

popularity and rank importance regardless of how the

language used and adopted. There is limited literature on

assessing programming language popularity, success and

sustainability by measuring fork performance as, to date,

forking has not been instrumental as a viable process for

time to production on repository files.

Since forking forms an integral part of OS software

development, ranking importance of programming

languages is relevant. A programming language forking

rank result could be of benefit when considering and

selecting the right programming language to adopt, use and

fork in a platform, and obtain the right community support.

However, ranking programming language forking success

or popularity is not an easy task. There are a number of

factors to consider, including the target platform, elasticity

of a programming language, topic of interest, time to

production, programming language fork performance, and

community support. Most importantly, both forking and

programming language are time-independent and assessing

them can be daunting as forking fluctuates inconsistently.

4. SURVIVABILITY PREDICTION USING THE K
NEAREST NEIHBOUR METHOD

The K-Nearest Neighbour (KNN) method is one of the

most popular non-parametric classification algorithms

because it is simple, effective, and more accurate than many

other classification algorithms [22,24–28]. The KNN

Respository Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Fork Pattern

Rick/dotfiles 1 0 0 0 0 0 0 0 0 0 0 0 Fork Once Only

Droogans/unm

aintainable-

code 4 0 4 2 4 0 2 69 3 3 2 2 Fork Intermittent

Electron/electr

on 287 260 266 198 229 225 191 190 164 223 183 175 Fork Steady

method is used in data mining and statistics because of its

simple implementation and significant classification

performance produces more accurate results than many

other algorithms [25,29].

It was first introduced in 1951 by Fix and Hodges in their

unpublished report for the US Air Force School of Aviation

Medicine. In 1967 Cover and Hart formalised the original

idea and discovered the main properties of this method [22].

The KNN method can also handle mixed Euclidean

distance, adopted in this paper.

We aimed to predict the lifespan of a programming

language through forking using KNN, given forks range

from a few months to several months. The algorithm

calculates Euclidean distance from the 12 months of the

forking period based on the forking pattern categories to

evaluate which types of programming language repository

file are short- or long-lived by the minimum distance. We

chose a 12-month period rather than days or weeks as we

did not find a significant number of forked changes on

repositories over the shorter time-frame. We used the three

patterns defined above: single, intermittent and steady.

According to the Euclidean distance formula, the distance

between two points in a plane with coordinates (x, y) and

(a, b) is given by

dist((x, y), (a, b)) = √(x – a)² + (y – b)²

and the a, b, x and y variables must be numeric. As such,

we converted non-numeric variables from a forking dataset

downloaded from GitHub (January–December 2017) into

numeric variables (Table II). We adopted one of the queries

from [30] into the Google Big Query using the Select

Statement (see below, highlighted the condition to retrieve

only created forked repositories. We downloaded 1,000

repository files from GitHub, randomly categorised them

alphabetically.

SELECT events.repo.name AS events_repo_name,

COUNT(DISTINCT events.actor.id) AS events_actor_count

FROM (SELECT * FROM TABLE_DATE_RANGE

([githubarchive:day.],TIMESTAMP('2017-01-

01'),TIMESTAMP('2017-12-31'))) AS events

WHERE events.type = 'ForkEvent'

TABLE II. VARIABLES DEFINED FOR PROGRAMMING LANGUAGE SURVIVABILITY

Name Description Source Variable Typea Binary

Events_repo_name A repository file name GitHub x1 C N/A

Repo_type Own creation (from the description of the source code link) NA x2 C N/A

Prog Lang Name Programming Language 1. Python, 2. C++, 3. Java, 4. C, 5. C#,

6. PHP, 7. R, 8. JavaScript, 9. Go, 10. Assembly

GitHub

[16]

x3..x13 C 1 Yes, 0

No

Open Source

recognised license

Official Open Source license : BSD 3-Clause "New" or

"Revised" license,BSD 2-Clause "Simplified" or "FreeBSD"

license,GNU General Public License (GPL),GNU Library or

"Lesser" General Public License (LGPL),MIT

license,Mozilla,Common Development and Distribution License

(CCDL) Public License 2.0,Eclipse Public License

[15] x14..x21 C 1 Yes, 0

No

Open source

technology

Open Source Technology refers to OpenStack, Progressive Web

Apps, Rust, R, the cognitive cloud, artificial intelligence (AI),

the Internet of Things

[14] x22..x32 C 1 Yes, 0

No

Fork 12 surviving

months

Fork detected every month from Jan to Dec NA x33 B 1 Yes, 0

No

Environment

compliance

satisfy environment compliance (sustainable top 10

programming language, recongised license, open source

technology

NA x34 B 1 Yes, 0

No

Forking month January to December NA x35..x47 N N/A

a Binary, B; Character, C; Numeric, N.

To satisfy environment compliance around product,

programming language and license, we referenced Open

Source Technology’s list of top products developers are

interested in [31] and top officially recognised OS licenses

[32], and IEEE’s top programming languages and licenses

adopted in OS repository files [33], namely Python, C,

Java, C, C#, PHP, R, JavaScript, Go and Assembly.

A repository file name is a name given to uniquely identify

a piece of source code that stored in the GitHub. Due to

some filenames non-interpretable, the conversion from

characters into binary is difficult. For instance a repository

file name in GitHub labelled as “1ppm/1ppmLog”. For all

variables except the file repository file name, attributes with

text characters were converted into binary numbers (1=yes,

0=no); e.g., programming language names, repository file

and license. For instance, for the programming language

JavaScript, 1 indicated JavaScript was used and 0 indicated

it was not JavaScript.

In total, there were 47 attributes, with two added to

determine duration of programming language repository file

survival (in months) and how many repository files

complied with the criteria published in [31–32].

Our definition of a long-lived programming language

repository file was based on detecting a consecutive 12-

month forking performance; short-lived was no fork counts

detected in the 12-month period. For example, a JavaScript

social media repository file was predicted to have a short-

lived outcome as there was no fork in the 12-month period

versus a Python machine learning repository file was

predicted to be long-lived, having visible monthly forking.

In total, 47,000 forking data over the 12-month period were

evaluated for Euclidean distance, using the three patterns, to

determine which programming language repository files

were short- or long-lived by the minimum distance.

5. PROGRAMMING LANGUAGE REPOSITORY FILE
CATEGORISATION AND FORK PATTERN CLASSIFIERS

Categorising the forking dataset into single, intermittent, or

steady patterns revealed nine types of programming

language repository files based on environment compliance

and fork performance (Table III).

TABLE III. FORKING PATTERNS

Forking

Pattern

Programming Language Repository Files

Once Only Specific Respository File (SPF)

Intermittent Specific repository file met official licence

compliance and adopted a modern

sustainable programming language

(SRFMSPL)

Specific repository file met official licence

compliance (SRFOL)

Specific repository file met official licence

adopted a traditional sustainable

programming language (SRFOLTSPL)

Specific repository file adopted a traditional

sustainable programming language

(SRFTSPL)

Steady Specific repository file that did not meet the

full environment licence but has healthy fork

(SRFHF)

Specific repository file met official licence

compliance that has healthy fork

(SRFOLHF)

Specific repository file met official licence

compliance and adopted a modern

sustainable programming Language that has

healthy fork (SRFOLMSPLHF)

Specific repository file adopted a traditional

sustainable programming language that has

healthy fork (SRFTSPLHF)

TABLE IV. CATEGORISING PROGRAMMING LANGUAGE

RESPOSITORIY FILE FORKS AS SHORT- OR LONG-LIVED

Short-lived Long-lived

Abbreviation # Abbreviation #

SPF 138 SRFOLHF 32

SRFOL 104 SRFHF 20

SRFTSPL 172 SRFTSPLHF 42

SRFOLTSPL 347 SRFOLMSPLHF 5

SRFMSPL 5 SRFOLTSPLHF 107

SRFOLMSPLHF 28

Total 794 Total 206

Fig. 1. Categorising programming language repository file forks

as short- or long-lived.

6. CLASSIFIER RESULTS

The results of using Euclidian distance to categorise the

programing language repository file forks are shown in

Table IV and Figure 1. A high number were short-lived

(79.4%) and only a small number were long-lived (20.6%).

Our results identified some non-sustainable programming

languages that lacked environment compliance survived as

long as sustainable programming languages that met

environment compliance: 94/206 repository files did not

completely meet environment compliance but survived

well, e.g., CSS, Kotlin, Emacs Lisp and Jupiter Notebook.

Long fork survival could be due to a developer community

supporting an OS technology trend; e.g., machine learning,

web applications or android operating systems.

We found the majority of sustainable programming

languages were short-lived because of low or no license

compliance. The data revealed many developers chose a

low compliance license – development mountain copyright,

CC BY NC SA 4.0, Creative Commons Attribution 4.1,

WTFPL, or Educational Content License – however, as

these licenses are less popular and/or have low compliance

some developers are hesitant to contribute [32]. In contrast,

long-lived programming language repository files aligned

with the top 10 sustainable programming languages [33].

Nevertheless, some repository files that adopted

programming languages not in the top 10 – such as Python,

PHP, Swift, Shell and Ruby – also survived well.

6. K-NEAREST NEIGHBOUR RESULTS

The results of the KNN method are summarised in Table V,

shows the classification of programming language

repository files by KNN/ Euclidean Distance, and

illustrated with four case studies below.

0

100

200

300

400

500

600

700

800

900

Short-lived Long-lived

F
il

e
C

o
u

n
t

TABLE V. CATEGORISING PROGRAMMING LANGUAGE

REPOSITORY FILES SORTED BY EUCLIDEAN DISTANCE

Classification

File

Count

Euclidean

Distance Rank

SRFOTLSPLHF/

SRFOLMSPLHF

113 0 1

SRFTSPLHF 41 1 109

SRFOLHF/

SRFOTLSPLHF

33 1 113

SRFOLSPL/

SRFOLMSPL

374 1.4 187

SRFHF 20 2 562

SRF 1 3.2 566

SRFSPL/SRFOL 281 2.2 582

SRF 137 3.2 863

TABLE VI. ENVIRONMENT COMPLIANCE

Full

compliance Long-lived Short-lived Total

Yes 111 (TP) 94 (FP) 205

No 0 (FN) 795 (TN) 795

 111 889 1,000

6.1 Case One

A programming language repository file is found to

associate with the following properties: one of the top ten

OS technologies [31], met legitimate license compliance

[32], adopted a sustainable programming language [33],

and displayed monthly forking over the last 12 months.

This file is predicted to be a long-lived surviving

programming language file with healthy forking. Our

results predict SRFOTLSPLHF or SRFMTLSPLHF would

fall under this category.

6.2 Case Two

A programming language repository file is found not to

associate with one of the following properties: one of the

top ten OS technologies [31], met legitimate license

compliance [32], adopted a sustainable programming

language [33], and displayed monthly forking over the last

12 months. This file is predicted to be a long-lived

surviving programming language file with healthy forking.

Our results predict SRFHF would fall under this category.

6.3 Case Three

A programming language repository file is found not to

associate with more than one of the following properties:

one of the top ten OS technologies [31], met legitimate

license compliance [32], adopted a sustainable

programming language [33], and did not display monthly

forking over the last 12 months. This file is predicted to be

a lower surviving programming language. Our results

predict SRF would fall under this category.

6.4 Case Four

A programming language repository file is found not to

associate with more than one of the following properties:

one of the top ten OS technologies [31], met legitimate

license compliance [32], adopted a sustainable

programming language [33], but displayed monthly forking

over the last 12 months. This file is predicted to be a lower

surviving programming language. Our results predict

SRFOL would fall under this category.

7. EVALUATION

In this paper, we proposed evaluating sensitivity and

specificity to describe test performance, as these parameters

remain true regardless of the population of programming

language repository files to which the test is applied.

Definitions of environment compliance parameters are

presented in Table VI, where: true positive (TP) is the

number of programming language repository files that met

environment compliance and were classified as long-lived;

false positive (FP) is the number that met environment

compliance and were mistakenly classified as short-lived;

true negative (TN) is the number that did not meet

environment compliance and were classified as long-lived;

and false negative (FN) is the number that did not meet

environment compliance and were mistakenly classified as

short-lived.

For this study, we divided the data into training (80%) and

testing (20%) samples. We used the KNN method to

classify the class of the repository files then calculated the

Euclidean distance between the forking period and forking

pattern. After determining the parameter k and running the

KNN algorithm, accuracy was calculated using sensitivity,

specificity and precision. The formulas of the four measures

are outlined below.

Accuracy refers to the proportion of true results among the

total number of positive and negative cases examined.

Accuracy = TP+TN/(TP+TN+FP+FN)

For this study, accuracy is 111+795/(111+795+94+0)=

0.906 (90.6%).

Sensitivity is the proportion of long-lived programming

language repository files that meet full environment

compliance, and specificity is the proportion of short-lived

programming language repository files that meet full

environment compliance. Hence, the formula is

Sensitivity = TP/TP+FN

Specificity = TN/TN+FP

For this study, sensitivity is 111/111+0=1 (1%) and

specificity is 795/795+94=0.894 (89.4%).

Precision is the ratio of correctly predicted positive

observations to the total predicted positive observations;

that is, of all programming repository files that appeared to

survive, how many actually survived? High precision

therefore relates to a low false positive rate.

Precision = TP/TP+FP

For this study, precision is 111/111+94=0.542 (54.2%).

Figure 2 summarises all four metrics.

Fig. 2. Evaluative results comparison of the dataset.

8. DISCUSSION

Figure 1 highlights that there are less long-lived

programming language repository files than short-lived. For

a programming language repository file to survive it must

satisfy environment compliance properties; the data reveal

most do not comply and are therefore short-lived. In other

words, many project developers or owners who created

repository files may have ignored, or failed to pay attention

to, environment compliance factors, such as technology

trends and licensing.

Table VI is a statistical overview of programming language

repository file lifespan and Figure 2 is an overview of the

test result accuracy showing a breakdown of accuracy,

sensitivity, specificity and precision. Our findings reveal

that it is necessary for developers to pay attention to

environment compliance before developing a repository file

if they want to ensure healthy forking and file survivability.

The predictive results help us to better categorise

developers’ motivations for forking. The existing literature

identified seven categories of forking: OS, project,

software, social, code, programming language and

repository. Our data show long-lived forked programming

language repositories that satisfy environment compliance

are potentially related to social, programming language and

repository forking. In contrast, short-lived forked

programming languages that are environment compliant are

related to code, OS and project forking.

Our future work in this area will focus on introducing new

environment compliance variables to fast-growing project

code that is forked from very large-scale programming

languages with boundary conditions. In addition, we will

evaluate which machine learning method can accurately

and reliably predict fork patterns for short-lived and long-

lived programming languages.

REFERENCES
1. L Nyman. 2014. Hackers on forking. Proceedings of the

International Symposium on Open Collaboration, ACM,

New York, NY, USA, ISBN: 978-1-4503 30169. 4–12.

2. L Nyman, & T Mikkonen. 2011. To fork or not to fork: fork

motivations in SourceForge projects. International Journal

of Open Source Software & Processes 3(3), 1–9.

3. L Nyman, T Mikkonen, J Lindman, & M Fougère. 2012.

Perspective on code forking and sustainability in open

source software. Proceedings of the IFIP International

Conference on Open Source Systems, Open Source Systems:

Long-Term Sustainability, pp. 274–279. Buenos Aires,

Argentina.

4. F Ikuine, & H Fujita. 2014. How to avoid fork: the

guardians of Denshin 8 Go, Japan. Annals of Business

Administrative Science 13, 283–298.

5. KH Fung, A Aurum, & D Tang. 2012. Social forking in

open source software: an empirical study. CAiSE Forum 50–

57.

6. F Tegawendé, T Bissyandé, F Thung, D Lo, LX Jiang, & L

Réveillère. 2013. Popularity, intero-perability, and impact of

programming languages in 100,000 open source projects.

Proceedings of the Computer Software and Applications

Conference (COMPSAC), IEEE 37th Annual Conference,

Kyoto, Japan.
7. Ray, B. and Kim, M. 2012. “A Case Study of Cross-System

Porting in Forked Project”, in Proceedings of the 20th
ACM SIGSOFT International Symposium on the
Foundation of Software Engineering

8. Ray, B., Posnett, D., Filkov, V., and Devanbu, P. 2014. “A
Large Scale Study of Programming Languages and Code

Quality in Github”, Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of

Software Engineering, November 16-21, 2014, Hong Kong,

China

9. AE Azarbakht., & C Jensen. 2017. Longitudinal analysis of

the run-up to a decision to break-up (fork) in a community.

Proceedings of the IFIP International Conference on Open

Source Systems. OSS 2017, Springer.

10. M Biazzini, & B Baudry. 2014. “May the fork be with you”:

novel metrics to analyze collaboration on GitHub.

Proceedings of the 5th International Workshop on Emerging

Trends in Software Metrics, June 2014, Hyderabad, India.

11. B Chua. 2015. Detecting sustainable programming

languages through forking on open source projects for

survivability. Proceedings of the IEEE International

Symposium on Software Reliability Engineering (ISSRE)

2015 in conjunction with a WOSAR workshop, IEEE,

Gaithersburg, USA. 120–124.

12. B Chua. 2017. A survey paper on open source forking

motivation reasons and challenges. Proceedings of the

Pacific Asia Conference of Information Systems (PACIS),

Malaysia, Langakawi.

13. L Dabbish, C Stuart, J Tsay, & J Herbsleb. 2012. Social

coding in GitHub: transparency and collaboration in an open

software repository. Proceedings of the ACM 2012

Conference on Computer Supported Cooperative Work

Seattle, Washington, USA.

14. J Jiang, D Lo, JJ He, X Xia, PK Singh, & L Zhang. 2016.

Why and how developers fork what from whom in GitHub.

Journal of Empirical Software Engineering 100(21), 1–32.

15. VG Krogh, S Haefliger, S Spaeth, & MW Wallin. 2012.

Carrots and rainbows: motivation and social practice in open

source software development. Journal of MIS Quarterly

362, 649–676.

16. G Robles, & M Gonzalez-Barahona. 2012. A comprehensive

study of software forks: dates, reasons and outcomes. Open

source systems: long-term sustainability. IFIP Advances in

Information & Communication Technology 378(1), 1–14.

17. B Chua. (under review). Applying systematic literature

review and content analysis methods to analyse open source

developers’ forking motivation interpretation, category and

consequences. Journal of Australian Information Systems.

18. J Biolchini, P Mian, A Natali, & G Travassos. 2005.

Systematic Review in Software Engineering. Technical

Report RT-ES 679/05, COPPE/UFRJ, Rio de Janeiro,

Brazil.

19. B Kitchenham, OP Brereton, D Budgen, M Turner, J Bailey,

& S Linkman. 2009. Systematic literature reviews in

software engineering – A systematic literature review.

Journal of Information and Software 51(1), 7–15.

20. S Cavanagh. 1997. Content analysis: concepts, methods and

applications. Nurse Researcher 4(3, 5–16.

21. H Hsiu-Fang, & SE Shannon. 2016. Three approaches to

qualitative content analysis. Journal of Qualitative Health

Research 15(9), 1277–1288.

22. T Cover, & P Hart. 1967. Nearest neighbour pattern

classification. IEEE Transactions on Information Theory

13(1), 21–27.

23. Linberg, K.R., 1999. Software developer perceptions about

software project failure: a case study. Journal of Systems

and Software 49(2), 177–192.

24. J Gou, L Du, Y Zhang, & T Xiong. 2012 A new distance

weighted k-Nearest Neighbor classifier. Journal of

Information and Computer Sciences 9(6), 1429–1436.

25. D Hand, H Mannila, P Smyth. 2001. Principles of Data

Mining. MIT Press, Cambridge.

26. K Odajima, & AP Pawlovsky. 2014 A detailed description

of the use of the kNN method for breast cancer diagnosis.

In: Biomedical Engineering and Informatics, 7th

International Conference. IEEE; May 2014, 688–692.

27. H Wang. 2002 Nearest Neighbours without k: A

Classification Formalism based on Probability. Technical

report, Faculty of Informatics, University of Ulster, N.

Ireland, UK.
28. X Wu, V Kumar, JR Quinlan, J Ghosh, Q Yang, H.

Motoda, G. J. McLachlan, A. Ng, B. Liu, P.S. Yu,
Z.H. Zhou M.Steinbach, D.J. Hand and D.Steinberg.2008
Top 10 algorithms in data mining. Knowledge Information
Systems 14(1), 1–14

29. F Sebastiani. 2002 Machine learning in automated text
categorization. ACM Computing Surveys 34(1), 1–47

30. https://octoverse.github.com/. Accessed 16th Feb 2019.
31. https://opensource.com/article/17/11/10-open-source-

technology-trends-2018. Accessed 5th Jan 2018
32. https://opensource.org/licences. Accessed 5th Jan 2018
33. https://spectrum.ieee.org/static/interactive-the-top-

programming-languages-2018. Accessed 5th Jan 2018.

https://opensource.com/article/17/11/10-open-source-technology-trends-2018.%20Accessed%205th%20Jan%202018
https://opensource.com/article/17/11/10-open-source-technology-trends-2018.%20Accessed%205th%20Jan%202018
https://opensource.org/licences.%20Accessed%205th%20Jan%202018

