
Continuous assessment in software engineering project
course using publicly available data from GitHub

Henrik Gustavsson
University of Skövde

Skövde, Sweden
henrik.gustavsson@his.se

Marcus Brohede
University of Skövde

Skövde, Sweden
marcus.brohede@his.se

ABSTRACT
This paper describes an approach for assessment in a large
software engineering project course. We propose an
approach for continuously collecting information from a
source code repository and collaboration tool, and using
this information for assessing student contributions and also
for assessing the course as a whole from the teacher's
standpoint. We present how we display metrics for how the
students perform in relation to some of the requirements of
the course. We argue that continuous summative
assessment feedback to the students on how they are
performing in the project is a suitable strategy for ensuring
active participation from the students for the duration of the
project course.

Author Keywords
Software Engineering; Education; Project Course;
Assessment; Issue management

ACM Classification Keywords
K.3.2 Computer and Information Science Education: Self-
Assessment
D.2.8 Software Engineering: Process Metrics

INTRODUCTION
For many years, practical hands-on development work has
been seen as a staple for acquiring software engineering
knowledge on the undergraduate level [8]. Software
engineering has traditionally been taught by using different
kinds of project courses [12][13][15]. One way to keep the
development environment as realistic as possible is to have
large project courses or capstone project courses [15].
Large project courses not only give insights into
development but train the students in the collaborative
aspects of development as well as providing the technical
development skills [9]. Objective assessment in software
engineering courses can take many forms [5]. Assessment
can make use of many kinds of metrics such as measuring

attendance using time sheets [4][5] or by analysis of peer
surveys [5] or self-assessment surveys [4]. Metrics can also
be collected directly from the software repository [11][14].
Tools and technologies from open source and inner source
[3] can be combined with the knowledge learned from large
software engineering project courses [15], it is possible to
leverage the strengths of both worlds, by allowing the
collection of metrics from the publically available platforms
and tools.

Given the objectives above, this paper proposes an
approach for continuous assessment and self-assessment
using data continuously collected from the source code
repository and from the issue management tools on GitHub.
We detail the automated steps for collecting the data from
the publically available repository on GitHub.

First, we highlight the related work, and how our approach
advances the state of the art. After that we give a detailed
description of the peculiarities of the Software Engineering
Project Course that serves as the basis for the approach.
Then, we show how the required data can be used by
students and teachers for assessment and self-assessment
respectively. Finally, we describe the conclusions and
propose the future steps of this research.

RELATED WORK
A lot of research has been conducted on the design and
evaluation of software engineering project courses
[1][2][6][10]. Realism can be achieved by conducting the
work as a capstone or large project course [15]. We suggest
a novel approach, that in addition to this realism that comes
from a large project with many developers, we also work
using open source tools and practices, much like in inner
source processes [3]. Since all the tools and documentation
is completely open, all information in the project can be
collected from public information sources such as GitHub.

One key difficulty in assessing student contributions is that
the assessment has to take the individual results and the
results of the group as a whole into account when assessing
the contributions towards the final end product. This
becomes particularly difficult when large project courses or
capstone project courses are considered [15]. Summative
assessment for grading purposes and formative assessment
as feedout for students is key for successful project courses
[15]. We propose weekly automated data collection and
repository analysis as an objective and fair way to achieve
both purposes.

© 2019 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.

OpenSym '19, August 20–22, 2019, Skövde, Sweden
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6319-8/19/08…$15.00
https://doi.org/10.1145/3306446.3340820

Automatic data collection from code repositories has been
used for many different tasks such as connecting
development logs with corresponding issues [14],
analysing developer intentions in comments [7], or to track
the number of lines of code in a repository that was written
by each developer [11]. It is possible to use the number of
lines of code written in the repository as a rough estimate of
student participation in the course. However, the number of
lines of code does not give any information about work that
does not result in code, and it does not differentiate between
students that contribute little code but over a long time from
students that contribute much code over a short period of
time. Conversely, a time sheet [4] gives us a metric for the
time spent but if the time spent does not result in any code,
it is not trivial to confirm that any work indeed has been
performed. Furthermore since this metric is self-reported,
this is not necessarily, objective nor necessarily fair since
students may overestimate the time spent.

PROJECT COURSE DESCRIPTION
University of Skövde, Sweden is a small university, which
in 2015 had 4030 full time students and a teaching staff of
310. The course presented in this paper has a novel
organization, that combines a comparatively large project
with open source / inner source work processes, and was
introduced in 2011 as part of a Web development bachelor
program and taught by a team of teachers with backgrounds
in software engineering and computer science. The course
has for the most part kept the same syllabus each year, and
has run every spring since 2011. The data from 2011- 2013
data is however not considered in this paper since either the
student population was too small or the students worked on
some other artefact. One notable feature of this course is
that for the years 2013-2018, each year, the full roster of
around 30-40 students each year is divided into a number of
groups consisting of around 10 students. Each group works
a different aspect of the same artifact, LenaSYS1, and every
year, the students continue working on the same code base,
improving the project deliverable produced by the students
from the previous year. LenaSYS is a live system, already
used in production with actual end-users2. The end-users
are other students using the system for managing
programming and other assignments across a wide range of
web-technologies, taught as part of the Web application
programming curriculum at the University of Skövde.
Working on systems that are in use at the university makes
it easier for students to collect requirements and easier for
teachers to adjust the project scope [1]. In addition, making
source code publicly available would not be in the interest
of many companies that are willing to grant students the
chance to participate in their projects. Hence, this novel
large project course approach expose students to real in-use
systems of considerable complexity without having to find
companies that are willing to work with or provide publicly

1 https://github.com/HGustavs/LenaSYS
2 https://dugga.iit.his.se

available open source code. Open Source / Inner Source [3]
ecosystems promote workflows which help student gain
knowledge about pull requests into private repositories,
resolving conflicts and push changes back to the project on
GitHub. Another argument for using LenaSYS as the
development artifact in the project course is the fact that the
system has been developed over a long period of time and
as such carry a significant amount of legacy code which is
key for the learning outcomes since it is a more realistic
development process [10]. Furthermore, LenaSYS is
complex enough to accommodate multiple groups of
students looking at different issues, interacting on GitHub,
which has lead to a mature and full-featured product that
contributes to the motivation of the students.

Year
Total

Students
Computer
Science

Program
Percentage

Web
Develop.

Program
Percentage

2014 30 10 33% 20 67%

2015 34 13 38% 21 62%

2016 29 9 31% 20 69%

2017 43 22 51% 21 49%

2018 34 18 53% 16 47%

Total 170 72 42% 98 58%

Table 1. Students participation in the project course

Table 1 shows a brief listing of relevant information about
students in terms of population size, study program since
the course was launched. The project course was offered to
students from two distinct study programs: Web
applications programming and computer science study
program. The computer science program is technically-
oriented towards deeper programming and computational
concepts, whereas web programmers acquire background in
key web knowledge and computer graphics. Both programs
include basic programming courses, a Web page design
course, a database systems course and a course that
introduces software engineering methods. The computer
science majors are about a third of the total number of
students. Prior to their enrollment into the course, computer
science students often communicate that they are not
sufficiently knowledgeable in web technologies, whereas
web applications programming students worry that they
don’t have sufficient programming skills. Experience has
shown that such worries fade away within the first few days
of the project as students start to work better together and
complement their skills.
While students would most commonly adopt an iterative
agile software development life-cycle [2], our software
engineering course resources support this adoption with
tools from the open source ecosystem combined with
limited traditional instructor-led supervision [1] in order to
experience autonomy and self-responsibility in software

engineering projects. As students inherit the partly
completed end product from previous iterations of the
course, students are required to develop a proactive open
source management skills, which alleviate issues faced by
students when attempting initial contributions to open-
source software. The assisted entry into the iterative cycle
of open source management will help students to gain
progressive competencies leading to new knowledge [11].

By proactive we mean that students must learn to anticipate
the flow of events in the project, and be able to work from a
running start. When starting from scratch students are not
subject to normal maintenance and handling of existing
errors. This is quite distinct from repairing errors that each
developer recently introduced into code that they are
already familiar with, since the code was recently created. It
is a much less reactive task to repair errors that were
introduced one decade earlier by some other programmer.

DATA COLLECTION
It is key to apply this process each week so that code that is
committed but later removed from the main repository can
still be tracked. Even though a contribution does not remain
in the main repository at the end of the project, the
contribution may still be considered code that was
contributed to the project. Conversely, code that is written
but not merged into the main branch is not collected by the
tool. Only code that has been tested and approved by group
leaders is thereby counted towards the total for each
student.

We have developed a weekly data collection protocol for
collection contribution data from GitHub and the source
code. This data can then be used by our assessment tool or
other tools.

Data collection protocol
The data collection can use the available GitHub API to
gather the above mentioned data. A process that uses the
API is limited in terms of how many historical items you
can retrieve and also how far back the data points resides.
This may be a problem for large projects with thousands of
commits during a longer interval of interest. In some cases
a course can have a duration that is comparable to a whole
term or even a full year or longer. The GitHub web site can
in those cases be scraped directly without such limitations.
Each week during the course, the following information is
collected from publicly available information on GitHub.

● The name of each file that has been modified,
together with information about when the file was
harvested from github, and the hash of the commit
that contained the update.

● For each file we collect the hash of the
corresponding commit, the time that the change
was committed and the user ID of the student that
was the author of that commit.

● For each file we also collect each span of lines of
code that were modified in that commit, including
the full textual content of the modified span.

● For each student we collect only the GitHub user
id and the year that the student participated in the
course

● For each issue (or merge) that a student performs,
we store the time of the issue, the full text of the
issue, and all the information about the events that
comprise that issue.

figure 1. Detailed individual contributions

ASSESSMENT TOOL
The purpose of the assessment tool is to provide support for
teachers and students in order to assess the individual
contribution from each student to the project, in addition to
this, the tool provides support for teachers in order to help
teachers to gauge the performance in the whole project
course. This requires that a teacher or student can monitor
the progress of individual students each week of the course
and each day in each week.

For teachers, the teacher can select which student data is
displayed. For students, the view is locked and can only
display the information about the student himself/herself.

The graphs and tables (figure 1,figure 2,figure 3,figure 4
and figure 5) is actual screenshots. Students and teachers
see the same graphs/tables. Hence, we have complete
transparency in terms of what we use as foundation for our
assessment of continuous participation.

The Self Assessment tool does not distinguish between type
of code commits. We do consider to add code type
separation, e.g., how much LOC is
Javascript/PHP/CSS/HTML/Other.

The Self Assessment tool does not categorize students into
different levels of experience. We use the tool to gauge
participation continuously, but we are less concerned with
the level of participation. However, our experience is that
students that are not particularly good at programming will
excel in other parts of the project, e.g., testing.

At the moment the Self Assessment tool provides the
following views:

● A table showing a summary of the total
contribution in numbers and rankings (see figure
2). This overview is very similar to the type of
information we can show if we only consider the
course as a whole [11].

● For each week, a detailed description of the
contributions made by the student during the
interval (see figure 1)

● a graph showing the contribution per week for the
selected student, as a stacked bar chart (see figure
4), a line diagram where students can see their
contributions per week day (see figure 3)

● a global ranking table for the collected data (see
figure 5) The Ranking is only shown to teachers,
and it allows teachers to rapidly identify students
that are falling behind on one or more of the
metrics. It is key that the list can be sorted
dynamically, so teachers can quickly compare the
performance of the student in each metric.

Since some of the views are locked to one student at a time,
teachers can better assess the detailed contributions from
each student. Furthermore, a more complete image can be
gained from the rankings or the weekly graph. Graphing
individual days and comparing course weeks, allows us to
see if contributions are roughly equal over the course and
the working week.

figure 2. Table with student’s total contribution including a
rank for each category

figure 3. A line graph showing the contributions per working
day for a specific week or for all weeks summed

figure 4. A stacked bar graph showing a student’s contribution
per day/week

figure 5. Ranking table for the various metrics (github logins
redacted)

CONCLUSIONS
This paper lists three major contributions.

One important contribution is the design of the weekly data
collection protocol. This protocol will facilitate continuous
objective assessment of student participation in a project
course. We conclude that a weekly interval is suitable for
this type of large 10-week software engineering project
course.

The Self-assessment tools allow each student to gauge
individual progress using objective information collected
continuously from the source code each week. The color-
coding will provide each student with a glanceable
approximate measure of the current progress including the
current week.

One major advantage of the tool is to show that students
have participated in the project and in what way they have
participated. We are not looking to categorize students into
high/low performers. Coupled with the knowledge of what
type of role the student has (project leader or developer) we
can assess the participation. For example, a student with
less LOC but a lot of GitHub comments and GitHub events
is likely to be a project leader. Another example is if a
student has no contributions at all for one week. This would
allow us to quickly contact this student and to investigate
why there is a lack of participation. In such cases where

there are missing participation from students we also can
cross-reference with students’ diaries.

We also conclude that the objective information gathered
from the repository will help teachers to measure the
contribution and the participation of each student.
Participation can be assessed using the github events and
comments, and the technical contribution through the
physical code updates. We argue that this is a solid
foundation for fair individual assessment in a group
exercise.

We feel that the ability to have a tool that shows hard facts
about the actual contribution in a software engineering
project is very useful. To the best of our knowledge there is
no other tool that encompasses measurements from both
teamwork facilitating actions (GitHub comments and
GitHub events) and Number of files that have been
changed, and the number of lines of code that have been
modified.

It is way too common that the assessment of student
participation is gauged on LOC produced or in a written
report produced near the completion of the project course.
The former is objective but fails to take into consideration
all the teamwork facilitating work done. The latter will
seldom show that the participation has been continuous
over the course of the project and it is not objective.

One key insight from this work is that it is possible to make
a tool that allows us to assess individual student
contributions as well as assessing the course outcome using
the same tool. However, we have also concluded that we
need a way to track the progress of each project group of
students as well as the whole course. We also conclude that
it would be very beneficial for both self-assessment and
summative assessment if the timesheets were also
integrated and displayed alongside the github events.

FUTURE WORK
One important future development would be to provide
more detailed grouping / aggregation of information. It is
very important to be able to know if there are problems
within a group of students rather than within the course as a
whole. Currently this information can only partially be
deduced from the prior knowledge of the teachers involved
in the course. In prior years, individual projects groups have
had severe problems that were not visible in the course
average information. If we display the data from the view
of the issue, or the individual code files, students or
teachers could use this software to identify development
bottlenecks related to the development process.

Another key future development would be to add a way for
students and teachers to view the complete updated content,
so that the code could be evaluated rather than knowing
that, for example, a number of lines were updated in a
certain file. Currently this requires a cumbersome round-
trip navigation to github, which slows down the work-flow
for the teacher that is performing the assessment.

We also foresee that this type of toolkit could be used to
make an analysis of student contributions in other courses
that make use of public github repositories, such as final
year project courses. In this case we would be interested in
monitoring the development process of a single student, to
ascertain that the student has continuously been writing
program code rather than copying code from other sources.
We envision that this type of analysis tool will be helpful
for detecting anomalies in repositories such as unallowed
cooperation.

The assessment tool views all github events as equal. Some
events such as commits could be considered more valuable,
and some events such as tagging could be considered less
valuable. Furthermore, solving bugs and working on issues
resulting in solved bugs should be more valuable than
working on orphan issues which do not result in neither
commits nor other further work.

It has been previously shown [4] that timesheets play an
important role for student assessment; our system collects
time sheets, but not in a form that can be connected directly
to the data gathered from github. One interesting future
work task could be to integrate the time sheets gathered
from the students with the data collected from github. This
way the time sheets can be used for both assessment and
self-assessment alongside the data created from github.
Such time sheet data will show us more detailed how the
workdays look. Do students start at 8 and finish by 17? Are
they more productive in the morning or afternoon?

Students are required to keep a diary during the project.
Each day they are supposed to write 2-3 sentences of what
they did (or didn’t do). We cross-reference with this diary if
we see a dip in participation activity. Useful for example if
a student has been ill. We have plans to incorporate the
diary in the tool as well.

One important consideration is how students react to the
assessment tool. How do they feel about the transparency?
Do they think that their grading is fair and objective? Etc.
We have started to collect student responses through course
evaluations, but would like to do a more formal study
investigating students’ appreciation of the assessment tool.

Finally we propose that the collected information can be
used to perform scientific analysis of the progression of the
course over the years.

REFERENCES

1. Tero Ahtee. 2003. Inspections and historical data
in teaching software engineering project course. In
Proceedings 16th Conference on Software
Engineering Education and Training, 2003. CSEE
T 2003. (2003)

2. Maria I. Alfonso and Antonio Botia. 2005. An
Iterative and Agile Process Model for Teaching
Software Engineering. In 18th Conference on

Software Engineering Education & Training
(CSEET'05), Ottawa, Ont., 2005, pp. 9-16. doi:
10.1109/CSEET.2005.5

3. Noel Carroll, Lorraine Morgan, Kieran Conboy.
2018. Examining the Impact of Adopting Inner
Source Software Practices. 1-7.
10.1145/3233391.3233530.

4. Nicole Clark, Pamela Davies, and Rebecca Skeers.
2005. Self and peer assessment in software
engineering projects. In Proceedings of the 7th
Australasian conference on Computing education -
Volume 42 (ACE '05), Alison Young and Denise
Tolhurst (Eds.), Vol. 42. Australian Computer
Society, Inc., Darlinghurst, Australia, Australia,
91-100.

5. Jian Chen, Guoyong Qiu, Liu Yuan, Li Zhang and
Gang Lu. 2011. Assessing Teamwork Performance
in Software Engineering Education: A Case in a
Software Engineering Undergraduate Course. In
2011 18th Asia Pacific Software Engineering
Conference, Ho Chi Minh, Vietnam, December 5-
8, 2011. 17-24. 10.1109/APSEC.2011.50.

6. Michael Gnatz, Leonid Kof, Franz Prilmeier, and
Tilman Seifert. 2003. A Practical Approach of
Teaching Software Engineering. In Proceedings of
the 16th Conference on Software Engineering
Education and Training (CSEET ’03). IEEE
Computer Society, Washington, DC, USA, 120–
(2003)

7. Emitza Guzman, David Azócar, and Yang Li,
Sentiment Analysis of Commit Comments in
GitHub: An Empirical Study. In Proceedings of
the 11th Working Conference on Mining Software
Repositories, New York, NY, USA, 2014, pp.
352–355.

8. Jane H. Hayes, Timothy C. Lethbridge and Dan
Port. 2003. Evaluating individual contribution
toward group software engineering projects. In
25th International Conference on Software
Engineering, Proceedings., Portland, OR, USA,
2003, pp. 622-627. doi:
10.1109/ICSE.2003.1201246

9. George Mitchell and Declan Delaney. 2004. An
assessment strategy to determine learning
outcomes in a software engineering Problem-based
learning course. International Journal of
Engineering Education. 20. 494-502.

10. Tom Nurkkala and Stefan Brandle. 2011. Software
Studio: Teaching Professional Software
Engineering. In Proceedings of the 42Nd ACM
Technical Symposium on Computer Science
Education (SIGCSE ’11). ACM, New York, NY,
USA, 153–158.

11. Vedran Ljubovic and Novica Nosovic. 2012.
Repository analysis tools in teaching Software
Engineering. in 2012 IX International Symposium
on Telecommunications –5.

12. Jochen Ludewig and Ivan Bogicevic. 2012.
Teaching software engineering with projects. In
Proceedings of the First International Workshop
on Software Engineering Education Based on
Real-World Experiences (EduRex '12). IEEE
Press, Piscataway, NJ, USA, 25-28.

13. Valentin Razmov. 2007. Effective pedagogical
principles and practices in teaching software
engineering through projects. In 37th Annual
Frontiers In Education Conference - Global
Engineering: Knowledge Without Borders,
Opportunities Without Passports, Milwaukee, WI,
pp. S4E-21-S4E-26. doi:
10.1109/FIE.2007.4418158

14. Bilyaminu Auwal Romo, Andrea Capiluppi, and
Tracy Hall. 2014. Filling the Gaps of Development
Logs and Bug Issue Data. In Proceedings of The
International Symposium on Open Collaboration
(OpenSym '14). ACM, New York, NY, USA,
Pages 8, 4 pages. DOI:
https://doi.org/10.1145/2641580.2641592

15. Maria Vasilevskaya, David Broman, and Kristian
Sandahl. 2015. Assessing Large-Project Courses:
Model, Activities, and Lessons Learned. Trans.
Comput. Educ., vol. 15, no. 4, p. 20:1–20:30, Dec.
2015.

