
KDAP: An Open Source Toolkit to Accelerate Knowledge
Building Research

Amit Arjun Verma
SCCI Labs, IIT Ropar

Rupnagar, India
2016csz0003@iitrpr.ac.in

S.R.S. Iyengar
SCCI Labs, IIT Ropar

Rupnagar, Punjab, India
sudarshan@iitrpr.ac.in

Simran Setia
SCCI Labs, IIT Ropar

Rupnagar, Punjab, India
2017csz0001@iitrpr.ac.in

Neeru Dubey
SCCI Labs, IIT Ropar

Rupnagar, Punjab, India
neerudubey@iitrpr.ac.in

ABSTRACT
With the success of crowdsourced portals, such as Wikipedia, Stack
Overflow, Quora, and GitHub, a class of researchers is driven to-
wards understanding the dynamics of knowledge building on these
portals. Even though collaborative knowledge building portals are
known to be better than expert-driven knowledge repositories, lim-
ited research has been performed to understand the knowledge
building dynamics in the former. This is mainly due to two reasons;
first, unavailability of the standard data representation format, sec-
ond, lack of proper tools and libraries to analyze the knowledge
building dynamics.

We describe Knowledge Data Analysis and Processing Platform
(KDAP), a programming toolkit that is easy to use and provides
high-level operations for analysis of knowledge data. We propose
KnowledgeMarkup Language (Knol-ML), a standard representation
format for the data of collaborative knowledge building portals.
KDAP can process the massive data of crowdsourced portals like
Wikipedia and Stack Overflow efficiently. As a part of this toolkit,
a data-dump of various collaborative knowledge building portals
is published in Knol-ML format. The combination of Knol-ML and
the proposed open-source library will help the knowledge building
community to perform benchmark analysis.

URL: https://github.com/descentis/kdap
Supplementary Material: https://bit.ly/2Z3tZK5

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing systems and tools;Wikis; Open source software;
Computer supported cooperative work; Empirical studies in collabo-
rative and social computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OpenSym 2020, August 25–27, 2020, Virtual conference, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8779-8/20/08. . . $15.00
https://doi.org/10.1145/3412569.3412575

KEYWORDS
Knowledge Building,Wikipedia, datasets, open-source library, Q&A

ACM Reference Format:
Amit Arjun Verma, S.R.S. Iyengar, Simran Setia, and Neeru Dubey. 2020.
KDAP: An Open Source Toolkit to Accelerate Knowledge Building Research.
In 16th International Symposium on Open Collaboration (OpenSym 2020),
August 25–27, 2020, Virtual conference, Spain. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3412569.3412575

1 INTRODUCTION
With progress in computational power, research in various domains
is primarily based on the availability of data and appropriate tools
for analysis. Open access to libraries and data enhances the ease and
pace of research [26]. The impact of open-source tools (like Python,
R, and Scilab) can be verified by the expansion in the utility of
these tools by the research community [41]. For example, a simple
task like matrix inversion requires multiple lines of code to be
written in Python. Whereas, the usage of NumPy library reduces
the complexity of this task to a single line of code. Similar examples
can be found in various domains, where the usage of analysis tools
reduces the complexity of tasks in terms of time and effort. It is
useful to note that in recent years, the scientific community is
positively influenced by a growing number of libraries, such as
scikit-learn for machine learning, NumPy and SciPy for statistical
computing, and matplotlib for visualization [52].

The advancement in computational power and storage facilities
allows crowdsourced portals, such as Wikipedia, Stack Overflow,
Quora, Reddit, and GitHub, to host their data on publicly available
servers. The popularity and open access to the datasets of these
crowdsourced portals have drawn the attention of researchers from
various communities. Observing the collaboration and contribu-
tion of the crowd, researchers have generalized the knowledge
development on these portals to the actual knowledge building pro-
cess [12]. From predicting box office success of movies to building
state-of-the-art software, these portals have helped the research
communities in various aspects [13, 28, 46].

The diverse and rich content present on Wikipedia is used to
study online collaboration dynamics [10, 21], to examine its impact
on other online collaborative portals [45], and to train state-of-
the-art artificial intelligence algorithms [30]. Similarly, the massive
growth of users and posts on crowdsourced QnA portals like Stack

https://doi.org/10.1145/3412569.3412575
https://doi.org/10.1145/3412569.3412575

Overflow, Yahoo! Answers, and Quora, have attracted the atten-
tion of researchers to study the dynamics of knowledge building
on these portals [9, 14, 20, 34, 36]. Adding to the portal-specific
analyses of knowledge building on wiki-based portals and QnA
portals, inter-portal analyses would stimulate an ecosystem to give
a broader perspective of knowledge building dynamics. Recent
literature has shown a rise in demand for understanding the rela-
tionships between these portals [27, 45].

The unique functionalities of wiki-based portals and QnA portals
have resulted in different representation formats of their datasets.
For research involving the large-scale analyses of these portals,
there is an underlying problem of the unavailability of datasets
in a standard format at one place. Furthermore, the existing tools
for data extraction and analysis are narrowly focused on specific
portals. For example, finding the contributors who are common
to Wikipedia and Stack Overflow requires multiple steps of pre-
processing and separate analysis of the corresponding datasets.
Based on the fact that a large fraction of researchers in the sci-
entific community are dependent on software tools [18, 31], we
aim to create an ecosystem by standardizing the representation
of the datasets of crowdsourced portals and providing a toolkit to
analyze these datasets. Although there is an abundance of portal-
specific APIs (e.g. Wikipedia API1, Wikidata Query Service2, Stack
Exchange API3, Reddit API4), the bottleneck is the restriction on
API calls. Another downside is the requirement to learn different
APIs for performing analyses on different portals. The structural
difference of the extracted data from crowdsourced portals necessi-
tates intermittent pre-processing for analyses. We emphasize the
absence of a standard representation format for the data of these
portals, albeit the commonality of extensive knowledge develop-
ment. While there has been substantial research using the dataset of
these portals, none of the existing tools have the potential to fulfill
the requirements mentioned above. Our work will act as a catalyst
for knowledge building research by bridging the gap between the
supply of data and demand for analysis.

The key contributions of this paper are as follows:
(1) An XML5-based Knowledge Markup Language (Knol-ML),

a novel approach for standardizing the representation of
dataset of various collaborative knowledge building portals.

(2) Knowledge Data Analysis and Processing Platform (KDAP),
a standard high-performance library that is easy to use and
provides high-level operations for the analysis of knowledge
data.

(3) Knowledge Analysis and Retrieval (KAR) dataset, a set of
data of these portals in Knol-ML format.

KDAP is developed for single big-memory multiple-core machines
and stabilizes the disparity between maximum performance and
compact in-memory data representation. KDAP aims at facilitat-
ing the knowledge building community with open access to stan-
dard dataset and efficient data analysis methods. This will increase
the ease of inter-portal analyses and also reduce the overhead for

1https://en.wikipedia.org/w/api.php
2https://query.wikidata.org/
3https://api.stackexchange.com/
4https://www.reddit.com/dev/api/
5https://www.w3.org/TR/REC-xml/

researchers to handle different data formats and corresponding
APIs/libraries for analyses of these portals.

The rest of the paper is organized as follows. First, we present the
relevant literature, including the various representation formats
and tools to analyze the dataset of knowledge building portals
(section 2). Then we describe the Knol-ML format and the extension
mechanism associated with it (section 3). The details of the KDAP
library is provided in the next section (section 4). Finally, we present
the evaluation of KDAP and results of the case studies performed
(section 5).

2 RELATEDWORK
In this section, we present the relevant literature regarding standard
data representation formats in various domains as well as open-
source tools to analyze the data.

2.1 Data Representation and Analysis
The problem of standard data representation and tools to analyze
data existed in other related domains. In particular, the dynamic
nature of graph structures claims for a standard representation
format for visualization and analyses. This claim has been addressed
with the formulation of formats, such as Pajek, Graph Modeling
Language (GML), Graph Markup Language (GraphML), and Graph
Exchange XML Format (GEXF) [7]. Further, these formats have
triggered the development of open-source tools like NetworkX,
iGraph, SNAP, and Gephi for analysis and visualization of graphs
[1, 23]. The availability of such standard formats and analysis tools
promotes open science and helps in the advancement of scientific
research [32].

2.2 Tools and Parsers for Crowdsourced Portals
Though portal-specific tools are developed to present the analyses
of questions asked for particular crowdsourced portals, standard
tools, regardless of the portal, are unavailable.

2.2.1 Wikipedia-based APIs. Various tools and libraries have been
developed to analyzeWikipedia data. Most of these tools extract the
data in real-time to answer questions. A common example of such a
tool is the web-based Wikipedia API. It has been frequently used to
retrieve language links [40], finding articles related to a word [50],
getting details about edits in articles [4], etc. However, the downside
of using a web-based API is that a particular revision has to be
requested from the service, transferred over the Internet, and then
stored locally in an appropriate format. Setting up a local Wikipedia
mirror helps circumvent the drawback, but the constraint that
Wikipedia API provides full-text revisions leads to a large amount
of data being transferred. A similar tool is the Wikipedia Query
Service6, which helps user query against the wikidata7 dataset.
Currently, in the beta mode of its development, it contains a list of
complex queries (e.g. Metro stations in Paris, places that are below
10 meters above sea level), which can be asked on the live dataset.
Though the tool is sophisticated, there is a stipulated deadline of
60 seconds, beyond which queries cannot be asked. Such tools

6https://query.wikidata.org/
7https://www.wikidata.org/wiki/Wikidata:Main_Page

are useful for sampling data from the entire set or asking specific
queries, but the flexibility with data and algorithms is limited.

2.2.2 Wikipedia data parsers. Apart fromweb-based services, tools
to extract and parse the Wikipedia data dump are available. Fer-
schke et al. [15] developed the Wikipedia Revision Toolkit, which
represents Wikipedia revisions in compressed form by just storing
the edits, hence decreasing the size of the dump by 98%. Efficient
retrieval methods were implemented to retrieve the data of a par-
ticular revision from the compressed data dump. Wikibrain, devel-
oped by Sen et al. [38], is another example of Wikipedia data dump
parser, which surmounts the unavailability of standard Wikipedia-
based algorithms. It provides state-of-the-art algorithms ranging
from extracting pageviews to finding semantic relatedness, but
the number of algorithms is limited. The usage of various parsers
for wiki markup-based8 data dumps (e.g. MediaWiki Utilities [16],
mwxml [17]) are restricted to basic data.

2.2.3 QnA-based tools. Few QnA-based portals provide APIs for
users to query the database. For instance, Stack Exchange API9
developed by Stack Exchange network is employed to obtain various
analyses results. Similarly, API provided by Reddit (Reddit API10)
can be used to acquire information like user details, subedits, etc.
Like Wikipedia APIs, these APIs also have a limit on the number of
calls restricting large-scale analyses.

3 KNOL-ML: KNOWLEDGE MARKUP
LANGUAGE

Analysis of crowdsourced knowledge building portals entails data
storage to facilitate easy retrieval and exchange. Such portals vary
in their functionalities, resulting in a distinct schema for storing
data in the database. Due to the structural difference of the schemata,
data dump provided by these portals have different representation
formats. The steps involved in the process of analyzing the data
are; data retrieval, pre-processing, and analysis. The absence of
standard libraries and tools to analyze the data of crowdsourced
portals follows as yet another downside, restricting the knowledge
building community to analyze and study the dynamics of these
portals.

Motivated by the goal of having a standard library and access to
benchmark datasets for crowdsourced portals, we propose Knowl-
edge Markup Language (Knol-ML), an XML based data representa-
tion format for these portals. We specify the following:

1. Core elements to represent the knowledge data structures.
2. An extension mechanism that allows to independently add

portal-specific knowledge data with the base as core elements.
The extension mechanism provides a feature of adding extra

information that can be combined or ignored without affecting
the overall structure. Thus, a portal specific format can be created,
respecting the core structure of Knol-ML. The heterogeneity in the
representation formats of the data of different portals has created a
dire need for the feature mentioned above. There are various data
serialization formats like JSON, YAML, SOAP, and XML, of which
XML [6] tops the list for developing standard data representation

8https://en.wikipedia.org/wiki/Help:Wikitext
9https://api.stackexchange.com/docs
10https://www.reddit.com/dev/api/

Contributor 1

Contributor 2

Contributor 3

Contributor k

Time - t1

Time - t2

Time - t3

Time - tn

Figure 1: An illustration of sequential knowledge building in
crowdsourced environment. A contribution can be seen in
the form of addition (green) or deletion (red) information.

format for crowdsourced portals. The reason being its usage in
diverse areas and the availability of widely supported tools for
parsing and handling XML-formatted data.

3.1 Core Layer
Sequential knowledge development is the fundamental feature of
crowdsourced knowledge building portals, where the crowd de-
velops knowledge sequentially by adding, deleting, and editing
information [8]. Over and top of this fundamental feature, some
portals have customized features like upvoting and downvoting
others’ contributions, accepting answers, and adding comments. In
this section, we describe the representation of the data of crowd-
sourced portals in Knol-ML format. The core layer constitutes the
foundation of the format, describing the underlying elements to
represent sequential knowledge development. It can also include
additional information (e.g., user’s biography), which can be easily
identified and optionally ignored, leaving the structural informa-
tion of the core layer undisturbed. This extension is by virtue of
extensibility provided by the XML framework. Section 3.2 defines
additional information in this context, and its inclusion.

We define instance as a piece of information which is added
by a contributor at a particular timestamp. The idea is to break the
knowledge data into a series of instances, making it the fundamental
unit of our format. This fragmentation allows us to represent the
dataset of any knowledge building portal as a set of instances,
each having a set of attributes like contributor, timestamp, and
text. The idea is motivated by the GraphML format, where a set of
vertices and edges defines a graph, with each having its own set of
parameters.

We define our format based on the activities performed on the
collaborative knowledge building portals. As explained earlier, users
exhibit various activities in the knowledge development process,
as illustrated in Fig. 1. Each document is considered as separate
Knowledge Data, which may contain multiple instances of edits
performed by various contributors. The structure depicted in Fig.
1 constitutes the fundamental structure of our format. The XML
schema of the Knol-ML format has been provided in the Resources
section.

<KnowledgeData Type="text" Id="1">
 <Title>This is an example for sequential knowledge data</Title>

 <Instance Id="1" InstanceType="Revision">
 <TimeStamp><CreationDate>t1</CreationDate></TimeStamp>
 <Contributors>
 <OwnerUserName>Editor 1</OwnerUserName>
 <OwnerUserId>1</OwnerUserId>
 </Contributors>
 <Body><Text Type="text">Edits of Editor 1</Text></Body>
 </Instance>

 <Instance Id="2" InstanceType="Revision">
 <TimeStamp><CreationDate>t2</CreationDate></TimeStamp>
 <Contributors>
 <OwnerUserName>Editor 2</OwnerUserName>
 <OwnerUserId>2</OwnerUserId>
 </Contributors>
 <Body><Text Type="text">Edits of Editor 2</Text></Body>
 </Instance>

</KnowledgeData>

Figure 2: Representation of sequential knowledge data in
Knol-ML format.

Fig. 2 depicts the Knol-ML format for sequential knowledge data.
A Knol-ML document may contain multiple <KnowledgeData>,
each representing different document. The topic of a document
is described using the <Title> tag. The information regarding a
particular edit performed by a contributor is described within the
<Instance> tag. It contains three mandatory tags explained below:

• A <TimeStamp> tag contains a sub-tag <CreationDate>,
which stores the commit date and time of this edit.

• <Contributors> tag stores the details regarding editor of
this instance. It has two further sub-tags, <OwnerUserName>,
which stores the name of the editor and <OwnerUserId>,
which stores the unique Id assigned to the editor. The former
is optional, but the latter is mandatory.

• The <Body> tag contains a sub-tag <Text>, which stores the
actual edits of this instance.

The sub-tags of <Contributors> and <Body> tags ensure that ad-
ditional information can be included within them appropriately.

The knowledge building portals can be divided into two cate-
gories, wiki-based and question and answer (QnA)-based. Although
some of the knowledge building portals (e.g., Github) cannot be
classified into either of these two categories, their data can be rep-
resented in Knol-ML format following the sequential knowledge
model with the help of an extension mechanism. For wiki-based
portals, each article is considered as <KnowledgeData> in Knol-ML
format whereas, for QnA-based portals, a thread is considered as
<KnowledgeData> which is defined as a question and all the posts
(answers, comments, votes, scores, etc.) related to it [47]. The full
description of the data representation of wiki-based and QnA-based
portals is present at: https://bit.ly/2Z3tZK5 (Appendix 1.2 and 1.3).

3.2 Extension Mechanism
The core layer defined previously describes the generalized struc-
ture of sequential knowledge in Knol-ML format. We use the exten-
sionmechanism, a feature of XML, to represent the additional portal
specific information (e.g., badges’ details, users’ bio, pageviews, and
editors’ location). Brandes et al. [5] have used a similar approach in

<Def	attr.name="abc"	attr.type="string"	for="Instance"	id="abc"	/>

<KnowledgeData	Type="text"	Id="1">
				<Title>Title	of	the	article</Title>

				<Instance	Id="1"	InstanceType="Revision">
								<TimeStamp><CreationDate>t1</CreationDate></TimeStamp>
								<Contributors>
												<OwnerUserName>Editor	1</OwnerUserName>
												<OwnerUserId>1</OwnerUserId>
								</Contributors>
								<EditDetails>
													<EditType>details	of	edit</EditType>
								</EditDetails>
								<Body><Text	Type="text">Edits	of	Editor	1</Text></Body>

								<Knowl	Def="abc">sample	value</Knowl>

				</Instance>

</KnowledgeData>

Additional
Data

Figure 3: Representation of extension mechanism in Knol-
ML.

GraphML for representing additional information in graphs. They
have defined the location of the additional data with the help of
<key> and <data> tags. New data can be accommodated within the
<data> tag, which requires a <key> providing a name and domain
(type and range of values it can take) of this new data. The domain
is defined using for attribute of the <key> tag.

Analogously, we have defined <Knowl> and <Def> tag to rep-
resent the additional information, as shown in Fig. 3. The <Def>
tag can be defined by including attributes name, domain, and lo-
cation of this new information. The name, domain, and location
are defined using attr.name, attr.type and for attribute respec-
tively. Each element in the Knol-ML core layer can contain multiple
<Knowl> tags, representing the additional information for that ele-
ment. Using this extension mechanism, any additional information
can be described in the Knol-ML format. Also, a parser need not
support the extensions to extract information from the core struc-
ture. All the <Def> tags can be safely ignored as they appear before
the <KnowledgeData> tag, which is the root of every sequential
knowledge data.

4 KDAP IMPLEMENTATION DETAILS
KDAP is a system designed for analyzing knowledge data repre-
sented in Knol-ML format. KDAP design allows the methods of
analysis to work on any category of knowledge data. The founda-
tional classes of KDAP are centered around Knol-ML format. These
classes are categorized into wiki-based containers and QnA-based
containers. Wiki-based containers, WRKnol and WRCKnol, represent
the revision based wiki data. WRKnol corresponds to the full re-
vision and WRCKnol corresponds to the compressed form. In the
case of QnA-based portals, the data may or may not be available in
the form of revisions. Hence, QKnol corresponds to the knowledge
data, which is not in the form of revisions. QRKnol corresponds to
knowledge data with revisions.

The idea is to optimize the execution time and memory usage
of these methods by choosing the appropriate container class. The

https://bit.ly/2Z3tZK5

1 2 3 4 5 6

Type

"Question"

Instances

Instance attributesInstance elements

Body

Text

Type

"text"

"Question"

<KnowledgeData	Type="text"	Id="1">
				<Title>	Question	Title	</Title>

				<Instance	Id="1"	InstanceType="Question">
								<TimeStamp>
												<CreationDate>	t1	</CreationDate>											
								</TimeStamp>
								<Contributors>
												<OwnerUserId>	Editor	1	</OwnerUserId>
								</Contributors>
								<Body><Text	Type="text">	Question	</Text></Body>
								<Credit><Score>	score	value	</Score></Credit>
				</Instance>

</KnowledgeData>

Figure 4: A diagram of knowledge data structures in KDAP. Instance ids are stored in a hash table, and each instance has one
hash table and one vector associated with it representing the elements of the instance.

containers provide different methods for knowledge data, including
revision and non-revision based. The standardized structure of
Knol-ML simplifies the implementation of a new algorithm, as each
algorithm has to be implemented once, which can be executed
on any knowledge data. This implementation helps in comparing
different genres of crowdsourced portals under the umbrella of
knowledge building.

Methods implemented on wiki and QnA-based containers can
be divided into three categories; knowledge generation methods,
for the generation of new knowledge data (which is stored in Knol-
ML format); knowledge conversion methods, for the conversion of
data into Knol-ML format and knowledge analytic methods, for
the computation of specific knowledge building-related analysis
without manipulating the underlying structure. As future work, we
will also include manipulation methods that can be used to modify
knowledge data.

4.1 Containers Functionality
KDAP provides a standard interface for both the containers, by-
passing the step of pre-processing the data of multiple knowledge
building portals individually. Every method in KDAP is built on
the top of KDAP iterators that provides a container-independent
traversal of the instances of knowledge data. The KDAP convert-
ers can be used to club all the <KnowledgeData> into a single file,
or multiple files can be created, each having the same number
of <KnowledgeData>. The design of creating multiple files allows
parallel processing without compromising the dependency. Thus,
enabling a massive data dump to be broken down into multiple
chunks which can be loaded efficiently, optimizing the memory
usage. Also, the excessive increase in the number of files can be
avoided by including multiple <KnowledgeData> in a single Knol-
ML file.

4.2 Knowledge Data Representation
KDAP has been designed based on the Knol-ML structure. Hence, it
is essential to have a data structure such that accessing and analyz-
ing methods are computationally efficient. For example, accessing a

Table 1: Time Complexity of Key Operations in KDAP.

Operations Time Complexity11

Wiki-Based QnA-Based
Get an instance O(𝑘2𝑚) O(𝑛)
Get all instances O(𝑘𝑚𝑛) O(𝑛)

Retrieve instance attributes O(1) O(1)
Add an instance O(1) O(1)

particular instance of a Wikipedia article or Stack Overflow thread
should be reasonably fast and not expensive in terms of memory
consumption. Handling these features is imperative, as the data
of these portals will increase many folds with time. The trade-off
between time and space calls for a representation that optimizes
both of these. Furthermore, in collaborative knowledge building
portals order of knowledge arrival should be preserved. In general,
ordering is achieved by using vector-based representation, while
speed is achieved by using hash table-based representation.

For KDAP, we have chosen a middle ground between all-hash-
table and all-vector-knowledge representations. A hash table has
been used to represent the instances of knowledge data. The idea
behind using the hash table is to reduce the time complexity for
retrieving an instance, which plays a crucial role in processing
the knowledge data. Each instance consists of a unique identifier,
a single hash table storing the attributes of the instance, and a
vector representing the elements of the instance. Elements of the
vector may further contain a hash table and a vector representing
its attributes and elements, respectively. This cross between the
hash table and the vector is designed to store the hierarchical data
structure of Knol-ML in the memory. Fig. 4 summarizes knowledge
representations in KDAP.

4.3 Time Complexity of Key Operations
For the analysis of knowledge data, atomic operations must be
efficient and less time-consuming. KDAP allows the algorithms to
11The time complexity of O(1) is achieved by hashing the instances. Although hashing
has worst case time complexity of O(𝑛) , on an average O(1) complexity is achieved.

Conversion
Methods

Dataset	of	Online
Collaborative	systems

Raw	Data	Sources
e.g	Discussion	Data

Parser

Converter

provided
as	input
to

relevant
container
is	chosen

Generation
Methods

provided
as	input
to

Compression
Manager

Diff
Generator

WRCKnol
sends

output	to	 Knol-ML
file

converts
to

WRKnol	and
WQKnol
generates

Analytic
Methods KAR

Dataset

stored	in

user

queries

extracts

Analysis
Results

retrieves

KDAP	System

Figure 5: Overview of KDAP framework.

work on small chunks of data at a time, reducing the overall memory
consumption and time complexity. This is achieved by the help of
the Knol-ML structure, which allows the KDAP parser to process
one instance at a time. Furthermore, it gives an additional advantage
of processing the knowledge data parallelly, providing an extra
benefit of time complexity reduction. Since most of the operations
are dependent on the retrieval of information from Knol-ML data
like contributors’ information, and time details, we have focused
on optimizing the time and space complexity of such operations.

To process the Knol-ML files efficiently, its optimal representa-
tion in RAM is a pre-requesite. Wikipedia, being a revision based
system, store all the edits performed by the editors, resulting in
the accumulation of a lot of redundant information. Owing to this,
the size of each article reaches megabytes or even gigabytes. To
reduce the overall space complexity of processing revision based
Knol-ML files while optimizing the time complexity, we compress
the revision-based Knol-ML files using the algorithm proposed
by [15]. A naive algorithm will require to store the the edits made
in the current revision exclusively, but the revision access time
will increase as each revision will now require reconstructing the
text from a list of changes. Thus, to accelerate the reconstruction
process, every 𝑘th revision is stored as a full revision, where 𝑘«𝑛 (𝑛
is the total number of revisions). In KDAP, the user has an option
of tuning the value of 𝑘 .

Table 1 shows the time complexity of key operations on knowl-
edge data in KDAP. Here, 𝑘 is the number of instances that are
stored between two successive full revisions, and 𝑛 is the total
number of instances present in the knowledge data. As described
before, the size of 𝑘«𝑛, which means that the time complexity of
an instance retrieval in case of wiki-based data is very less. This is
because the size of the compressed wiki-based data is considerably
small as compared to the actual XML dump, which allows KDAP
methods to store it in RAM. Similarly, the size of a thread in a

11Using the difference of the current revision with the previous one using the diff
algorithm [19]

QnA portal is very less as compared to the total number of posts in
the portal, providing an extra benefit of storing multiple threads
parallelly in memory. As we show in the evaluation (section 5),
KDAP can provide high performance in terms of memory and time
complexity while allowing for efficient execution of algorithms.

Figure 5 is an overview of the KDAP framework, which summa-
rizes the entire process of Knol-ML conversion and analysis.

5 EVALUATION
In KDAP, we have implemented commonly used traditional algo-
rithms as well as new methods for analyzing and understanding
the dynamics of collaborative knowledge building. All these meth-
ods accept Knol-ML files as data input and return the analysis
results. The main disadvantage with collaborative online portals
is that the data dump is in raw format and requires multiple steps
of cleaning for analysis purposes. With the design of Knol-ML
and KDAP, we have created a system that reduces the time and
effort required to retrieve and analyze knowledge data. We pro-
vide many atomic level methods which can be used as building
blocks for analysis such as, language statistics as a measure of qual-
ity of contribution [3, 11, 22, 33], global inequality as a measure
of participation [2, 44], editing patterns to understand collabora-
tion [24, 49, 51], data extraction for various machine learning and
NLP algorithms [29, 30, 42].

To evaluate our tool, we describe two experiments involving the
common mining tasks as well as large-scale analyses. The tasks
listed in both the experiments were performed twice, including and
excluding KDAP. The authors in [39] have used a similar approach
to evaluate the PyDriller tool with other existing tools. The tasks in
the first experiment were designed to measure our tool based on the
ease of usage, whereas the tasks of the second experiment evaluate
the usefulness of our tool for large-scale analyses. We describe and
compare the analysis of both the experiments. To the best of our
knowledge, there does not exist any such library for the large-scale
analysis of collaborative knowledge building portals. Hence, we

compare the performance of KDAP with existing libraries and APIs
commonly used for extracting and parsing the dataset of these
portals. All the analyses were performed on a computer with a
3.10GHz Intel Xeon E5-1607 processor and sufficient memory to
hold the data in RAM. The analyses were performed 5 times, and
the average execution time and memory consumption are shown.

5.1 Evaluation Based on Ease of Usage
To evaluate our tool based on the ease of usage, we compare KDAP
against existing libraries and APIs for online collaborative portals.
We select six commonly known knowledge building tasks that we
encountered in our experience as researchers in the knowledge
building field. We divided the tasks into three groups, as shown
in Table 2. The reason behind this segregation is to evaluate our
tool based on a variety of tasks commonly performed by the knowl-
edge building researchers. We compare the analyses using different
metrics: lines of code (LOC), complexity (McCabe complexity [25]),
memory consumption, and execution time of both implementations.
Table 3 shows the results. For all the tasks, the number of lines that
are not a core functionality (for example, the constructor) is three.
We keep this number as it is always the same for all the tasks for
all the libraries/tools.

Regarding execution time, KDAP is 63.32 and 8.33 times faster
than the respective tool for tasks 1 and 2, respectively. This speed is
achieved because KDAP maintains a database of Wikipedia articles
name and corresponding categories (please see Appendix for more
details). For other tasks, the performance of KDAP is similar to
that of other tools. In terms of memory consumption, the tools
behave similarly. In most of the cases, memory consumption was
less than 20MB. In the most memory consuming task (task 4), 86MB
of memory was used.

The more significant difference is in terms of the complexity
of the implementation and LOC. For the former, we observe that
using KDAP results (on average) in writing 61% less complex code
as compared to respective libraries. This is specially the case in
tasks that have to deal with mining Wikipedia and Stack Exchange
(Task1 and 2); indeed, obtaining this information in KDAP is just a
one line code, while Wikipedia API and Stack Exchange API require
many lines of code and exceptions handling.

We also observe that the lines of code written using KDAP is
significantly lower than for the respective library. Table 3 shows
that, on an average, 84% fewer lines of code are required using
KDAP. The biggest difference is in task 3, where the tool had to
calculate the change in words, sentences and Wikilinks for each
revision of an article. This problem was solved in five LOC using
KDAP, while 120 LOC with cElementTree (95% difference). The
details of the experiment are provided at: https://bit.ly/2Z3tZK5
(Appendix 2), and codes for all the implementations are available
in the experiment section of the GitHub repository.

5.2 Evaluation Based on Usefulness
To further analyze our tool, we choose four peer-reviewed articles
in the CSCW domain to be analyzed using KDAP. We took the

12https://en.wikipedia.org/w/api.php
13https://effbot.org/zone/celementtree.htm
14https://github.com/earwig/mwparserfromhell

help of four undergraduate students working in the knowledge
building domain to re-perform the analysis mentioned in these
articles. Each participant was assigned one paper, as shown in
Table 4. They were asked to perform the analyses twice (including
and excluding KDAP) and note the time they took to solve the
problems, as well as their personal opinions on all the tools. All
the students had an experience in developing with Python and on
performing knowledge building studies, but they had never used
KDAP before. The setting of the experiment is the following:

• Each participant is assigned one paper, which he/she has
to implement first with KDAP, then with any other library
of their choice. Since understanding how to solve the tasks
requires some additional time, we asked the participants to
start with KDAP. This choice clearly penalizes our tool, as
participants will have a better intuition about the tasks dur-
ing the first round of implementation. However, we believe
that KDAP is simpler to use and that the difference between
the two implementations will still be significant.

• For the sake of simplicity, participants should only imple-
ment the core analysis methods. Methods like machine learn-
ing model training and graph plotting were excluded.

• Participants note the time taken to implement the tasks.
They are also asked to include the time spent in reading the
documentation of the tools, since understanding how to use
the tool is part of the experiment.

• After having implemented all the tasks, we ask the partici-
pants to elaborate on the advantages and disadvantages of
the tools.

The result of the experiment is shown in Table 5. All the participants
took less time to solve the problems (26% less in the worst case,
71% less in the best case). Regarding the LOC, three out of four
participants wrote significantly less LOC. P4, instead solved both
problems using a similar amount of time and LOC: the participant
first solved the problem using KDAP and applied the same logic to
solve the problem using cElementTree.

All the participants agreed that KDAP was more comfortable to
use than other analysis tools (P1 to P4). For example, P1 affirmed
that using KDAP, he was able to achieve the same result with more
straightforward and shorter code, and that he will continue to use
KDAP in his subsequent knowledge building studies. P2 added
that Wikipedia and Stack Exchange APIs are useful when one has
to perform limited extraction tasks, but it can be overcomplicated
when the goal is to perform broad-scale analysis on these portals, for
which KDAP is more appropriate because it hides this complexity
from the users.

5.3 Comparison of KDAPWith Other Tools
There are various tools likeWikiBrain, DBpedia, andWikipedia API
to analyze the knowledge data. Although these tools provide anal-
ysis and retrieval methods, knowledge building analysis methods
(like edit statistics, inequality measure, and controversy detection)
are limited in number. Also, these tools are limited to specific por-
tals. KDAP provides exclusive methods for analyzing the dynamics
of collaborative knowledge building. Table 6 shows a comparison
of methods implemented in KDAP with the other analysis tools.

https://bit.ly/2Z3tZK5

Table 2: Tasks assigned to the first group.

Data Extraction
Task 1 Extracting 5 Wikipedia articles from each category namely FA, GA, B, C, Start and Stub.

Task 2 Extracting 10,000 random questions, its answers and comments from
Stack Exchange site, say, anime.stackexchange.

Data Parsing

Task 3 Finding the number of words, sentences and Wikilinks added/deleted in each revision
of an article (United States).

Task 4 Extracting all the questions which had an accepted answer from anime.stackexchange.
Analysis Methods

Task 5 Find the correlation between monthly pageviews and the number of revisions of
an article (United States).

Task 6 Find the correlation between Gini coefficient (a measure of inequality of contribution)
and answer to question ratio for various stack stackexchange portals.

Table 3: Comparison between KDAP and various libraries.

Task-1 Task-2 Task-3 Task-4 Task-5 Task-6
KDAP (a) KDAP (b) KDAP (b & c) KDAP (b) KDAP (a) KDAP (b)

Time(sec) 7.13 70.45 2.91 11.24 521 528 4.8 2.7 80 81.2 86 82.3
Memory(MB) 0.98 4.07 15 16.2 2.01 1.9 86 83.2 0.42 0.69 2 4.3
Complexity 2 8 6 13 1 2 2 4 1 4 2 4

LOC 7 33 19 88 5 120 9 36 8 45 13 70
(a), (b) and (c) refers to Wikipedia API12, cElementTree13 and mwparserfromhell14 respectively

Table 4: Papers Assigned to the Participants.

Participant Paper Assigned
P1 Black Lives Matter in Wikipedia: Collaboration and

Collective Memory around OSM [43]
P2 Crowd Diversity and Performance in Wikipedia [37]
P3 An Empirical Study on Developer Interactions in

StackOverflow [48]
P4 Improving Low Quality Stack Overflow Post

Detection [35]

Table 5: Time and Loc Comparison for Each Participant.

Participant With KDAP Without KDAP Total

P1 Time (minutes) 70 190 -63%
LOC 19 401 -95%

P2 Time (minutes) 110 390 -71%
LOC 50 292 -82%

P3 Time (minutes) 46 90 -48%
LOC 34 83 -60%

P4 Time (minutes) 52 60 -13%
LOC 81 91 -10%

6 RESOURCES
KDAP library is available at: https://kdap.github.io. The git reposi-
tory contains user documentation, tutorials (with an introductory
video), Knol-ML schema, stable releases of KDAP17. As a part of

17Link for the library will be provided after acceptance of the paper

KDAP, we are also maintaining the Knowledge Analysis and Re-
trieval (KAR) dataset, containing the knowledge dataset of different
collaborative portals, including Wikipedia (all Featured articles and
Good articles), Stack Exchange network, and Wikia in Knol-ML
format. More datasets are being collected and will be updated in
the future. KDAP source code has been released under a permissive
BSD type open-source license. Being an open-source library, we
welcome the community to contribute to KDAP and KAR dataset.
Please refer to Appendix for details regarding getting started with
KDAP.

7 CONCLUSION AND FUTUREWORK
We have developed Knol-ML, an XML-based standard represen-
tation format for the data of crowdsourced knowledge building
portals. We also provide KDAP, a standard high-performance sys-
tem, to analyze the data of these portals. With Knol-ML and KDAP
methods, complex analysis can be performed using a few lines of
code. Apart from Knol-ML and KDAP, we release the KAR dataset,
which contains the data of crowdsourced knowledge building por-
tals in Knol-ML format. KDAP provides basic as well as advance
retrieval and analysis methods that have been proven useful in
studying collaborative knowledge building portals. We believe that
the combination of Knol-ML, KDAP, and KAR Dataset as a toolkit
will accelerate the research in knowledge building community.

As future work, we aim to develop more functions fo the KDAP
library. Also, based on the generalized structure, visualization meth-
ods can be implemented to visualize the knowledge data. KDAP
system can also be implemented in the C programming language,
optimizing the overall running time and memory usage. We en-
courage readers to install KDAP and explore its functionalities,

https://kdap.github.io

Table 6: Comparison of KDAP methods with other analysis tools.

Methods KDAP WikiBrain JWPL15 DBpedia16 Wikipedia API SE API
Extraction Methods

Wikipedia article extraction by name Yes Yes Yes No Yes No
Wikipedia article extraction by class Yes No No No Yes No

Stack Exchange extraction by portal name Yes No No No No Yes
Pageviews extraction of Wikipedia/Stack Exchange Yes Yes No No Yes Yes

Parsing Methods
Link/Category/Image extraction Yes Yes Yes Yes Yes Yes

Revision/text extraction Yes Yes Yes Yes Yes No
Contributors’ details extraction Yes No No No Yes Yes

Question/Answers/Comments extraction Yes No No No No Yes
Knowledge Building Methods

Semantic Relatedness No Yes No Yes No No
Edit Statistics Yes No No No No No

Measure of Inequality Yes No No No No No
Controversy detection Yes No No No No No

Yes represents that the number of calls are limited.

most importantly, we encourage researchers and developers to help
improve KDAP by joining our team on GitHub.

ACKNOWLEDGMENTS
This work was funded by the assistance received from CSRI, De-
partment of Science and Technology India via grant no. SR/C-
SRI/344/2016

REFERENCES
[1] Nadeem Akhtar. 2014. Social network analysis tools. In 2014 Fourth International

Conference on Communication Systems and Network Technologies. IEEE, 388–392.
[2] Ofer Arazy and Oded Nov. 2010. Determinants of wikipedia quality: the roles of

global and local contribution inequality. In Proceedings of the 2010 ACM conference
on Computer supported cooperative work. ACM, 233–236.

[3] Joshua E Blumenstock. 2008. Size matters: word count as a measure of quality
on wikipedia. In Proceedings of the 17th international conference on World Wide
Web. ACM, 1095–1096.

[4] Nadia Boukhelifa, Fanny Chevalier, and Jean-Daniel Fekete. 2010. Real-time
aggregation of wikipedia data for visual analytics. In 2010 IEEE Symposium on
Visual Analytics Science and Technology. IEEE, 147–154.

[5] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Himsolt, and M Scott
Marshall. 2001. GraphML progress report structural layer proposal. In Interna-
tional Symposium on Graph Drawing. Springer, 501–512.

[6] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and Franois
Yergeau. 2000. Extensible markup language (XML) 1.0.

[7] Ken Cherven. 2015. Mastering Gephi network visualization. Packt Publishing Ltd.
[8] Anamika Chhabra and SRS Iyengar. 2017. How Does Knowledge Come By? arXiv

preprint arXiv:1705.06946 (2017).
[9] Anamika Chhabra and SRS Iyengar. 2020. Activity-selection Behavior of Users in

StackExchange Websites. In Companion Proceedings of the Web Conference 2020.
105–106.

[10] Anamika Chhabra and SR Sudarshan Iyengar. 2018. Characterizing the Triggering
Phenomenon in Wikipedia. In Proceedings of the 14th International Symposium
on Open Collaboration. 1–7.

[11] Denzil Correa and Ashish Sureka. 2014. Chaff from the wheat: Characterization
and modeling of deleted questions on stack overflow. In Proceedings of the 23rd
international conference on World wide web. ACM, 631–642.

[12] Ulrike Cress and Joachim Kimmerle. 2008. A systemic and cognitive view on
collaborative knowledge building with wikis. International Journal of Computer-
Supported Collaborative Learning 3, 2 (2008), 105.

[13] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 conference on computer supported cooperative work.
ACM, 1277–1286.

[14] Zhenhua Dong, Chuan Shi, Shilad Sen, Loren Terveen, and John Riedl. 2012. War
versus inspirational in forrest gump: Cultural effects in tagging communities. In
Sixth International AAAI Conference on Weblogs and Social Media.

[15] Oliver Ferschke, Torsten Zesch, and Iryna Gurevych. 2011. Wikipedia revision
toolkit: efficiently accessing Wikipedia’s edit history. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies: Systems Demonstrations. Association for Computational Linguistics,
97–102.

[16] Aaron Halfaker. 2019. MediaWiki Utilities. Retrieved February 28, 2019 from
https://pythonhosted.org/mediawiki-utilities/

[17] Aaron Halfaker. 2019. MediaWiki XML Processing. Retrieved March 21, 2019
from https://pythonhosted.org/mwxml/

[18] James Howison and Julia Bullard. 2016. Software in the scientific literature:
Problems with seeing, finding, and using software mentioned in the biology
literature. Journal of the Association for Information Science and Technology 67, 9
(2016), 2137–2155.

[19] James Wayne Hunt. [n.d.]. An algorithm for differential file comparison.
[20] Imrul Kayes, Nicolas Kourtellis, Daniele Quercia, Adriana Iamnitchi, and

Francesco Bonchi. 2015. Cultures in community question answering. In Pro-
ceedings of the 26th ACM Conference on Hypertext & Social Media. ACM, 175–184.

[21] Aniket Kittur and Robert E Kraut. 2010. Beyond Wikipedia: coordination and
conflict in online production groups. In Proceedings of the 2010 ACM conference
on Computer supported cooperative work. ACM, 215–224.

[22] Srijan Kumar, Robert West, and Jure Leskovec. 2016. Disinformation on the web:
Impact, characteristics, and detection of wikipedia hoaxes. In Proceedings of the
25th international conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 591–602.

[23] Jure Leskovec and Rok Sosič. 2016. Snap: A general-purpose network analysis and
graph-mining library. ACM Transactions on Intelligent Systems and Technology
(TIST) 8, 1 (2016), 1.

[24] Jun Liu and Sudha Ram. 2011. Who does what: Collaboration patterns in the
wikipedia and their impact on article quality. ACM Transactions on Management
Information Systems (TMIS) 2, 2 (2011), 11.

[25] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software
Engineering 4 (1976), 308–320.

[26] Erin C McKiernan, Philip E Bourne, C Titus Brown, Stuart Buck, Amye Kenall,
Jennifer Lin, Damon McDougall, Brian A Nosek, Karthik Ram, Courtney K Soder-
berg, et al. 2016. Point of view: How open science helps researchers succeed.
Elife 5 (2016), e16800.

[27] Connor McMahon, Isaac Johnson, and Brent Hecht. 2017. The substantial interde-
pendence of wikipedia and google: A case study on the relationship between peer
production communities and information technologies. In Eleventh International
AAAI Conference on Web and Social Media.

[28] Márton Mestyán, Taha Yasseri, and János Kertész. 2013. Early prediction of
movie box office success based onWikipedia activity big data. PloS one 8, 8 (2013),
e71226.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

https://pythonhosted.org/mediawiki-utilities/
https://pythonhosted.org/mwxml/

[30] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[31] Udit Nangia, Daniel S Katz, et al. 2017. Track 1 paper: surveying the US National
Postdoctoral Association regarding software use and training in research. In
Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE
5.1).

[32] Brian A Nosek, George Alter, George C Banks, Denny Borsboom, Sara D Bowman,
Steven J Breckler, Stuart Buck, Christopher D Chambers, Gilbert Chin, Garret
Christensen, et al. 2015. Promoting an open research culture. Science 348, 6242
(2015), 1422–1425.

[33] Nicole Novielli, Fabio Calefato, and Filippo Lanubile. 2014. Towards discovering
the role of emotions in stack overflow. In Proceedings of the 6th international
workshop on social software engineering. ACM, 33–36.

[34] Nigini Oliveira, Michael Muller, Nazareno Andrade, and Katharina Reinecke.
2018. The Exchange in StackExchange: Divergences between Stack Overflow and
its Culturally Diverse Participants. Proceedings of the ACM on Human-Computer
Interaction 2, CSCW (2018), 130.

[35] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, Michele Lanza, and David
Fullerton. 2014. Improving low quality stack overflow post detection. In 2014 IEEE
International Conference on Software Maintenance and Evolution. IEEE, 541–544.

[36] Giovanni Quattrone, Afra Mashhadi, and Licia Capra. 2014. Mind the map: the
impact of culture and economic affluence on crowd-mapping behaviours. In
Proceedings of the 17th ACM conference on Computer supported cooperative work
& social computing. ACM, 934–944.

[37] Ruqin Ren and Bei Yan. 2017. Crowd diversity and performance in wikipedia:
The mediating effects of task conflict and communication. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. ACM, 6342–6351.

[38] Shilad Sen, Toby Jia-Jun Li, WikiBrain Team, and Brent Hecht. 2014. WikiBrain:
democratizing computation on Wikipedia. In Proceedings of The International
Symposium on Open Collaboration. ACM, 27.

[39] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. Pydriller: Python
framework for mining software repositories. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ACM, 908–911.

[40] Thomas Steiner, Seth Van Hooland, and Ed Summers. 2013. Mj no more: Using
concurrent wikipedia edit spikes with social network plausibility checks for
breaking news detection. In Proceedings of the 22nd International Conference on
World Wide Web. ACM, 791–794.

[41] Harry Thornburg. 2014. Four main languages for Analytics, Data Mining, Data
Science. Retrieved March 14, 2019 from https://www.kdnuggets.com/2014/08/
four-main-languagesanalytics-data-mining-data-science.html.

[42] Christoph Treude and Martin P Robillard. 2016. Augmenting api documentation
with insights from stack overflow. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 392–403.

[43] Marlon Twyman, Brian C Keegan, and Aaron Shaw. 2017. Black Lives Matter in
Wikipedia: Collective memory and collaboration around online social movements.
In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative
Work and Social Computing. ACM, 1400–1412.

[44] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. 2013. Stackover-
flow and github: Associations between software development and crowdsourced
knowledge. In 2013 International Conference on Social Computing. IEEE, 188–195.

[45] Nicholas Vincent, Isaac Johnson, and Brent Hecht. 2018. Examining Wikipedia
With a Broader Lens: Quantifying the Value of Wikipedia’s Relationships with
Other Large-Scale Online Communities. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. ACM, 566.

[46] Gang Wang, Konark Gill, Manish Mohanlal, Haitao Zheng, and Ben Y Zhao. 2013.
Wisdom in the social crowd: an analysis of quora. In Proceedings of the 22nd
international conference on World Wide Web. ACM, 1341–1352.

[47] G AlanWang, Harry JiannanWang, Jiexun Li, Alan S Abrahams, andWeiguo Fan.
2015. An analytical framework for understanding knowledge-sharing processes
in online Q&A communities. ACM Transactions on Management Information
Systems (TMIS) 5, 4 (2015), 18.

[48] Shaowei Wang, David Lo, and Lingxiao Jiang. 2013. An empirical study on
developer interactions in StackOverflow. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing. ACM, 1019–1024.

[49] Adam Wierzbicki, Piotr Turek, and Radoslaw Nielek. 2010. Learning about team
collaboration from Wikipedia edit history. In Proceedings of the 6th international
symposium on Wikis and open collaboration. ACM, 27.

[50] Zhaohui Wu and C Lee Giles. 2015. Sense-aaware semantic analysis: A multi-
prototype word representation model using wikipedia. In Twenty-Ninth AAAI
Conference on Artificial Intelligence.

[51] Jie Yang, Claudia Hauff, Alessandro Bozzon, and Geert-Jan Houben. 2014. Asking
the right question in collaborative q&a systems. In Proceedings of the 25th ACM
conference on Hypertext and social media. ACM, 179–189.

[52] Rongying Zhao and Mingkun Wei. 2017. Impact evaluation of open source
software: An altmetrics perspective. Scientometrics 110, 2 (2017), 1017–1033.

A GETTING STARTEDWITH KDAP
A.1 Installation
KDAP is deployed on pip and can be installed using the command
pip install kdap. The library is present on github and can be
installed from there. The github repository will be updated after
the acceptance. Please refer to the supplementary material present
at: https://bit.ly/2Z3tZK5 (section 2) for more information.

A.2 Downloading Dataset
Using kdap is very simple. You only need to create the knol object
which can be further used to call the kdap methods. For example,
the following lines of code will download and store the full revision
history of Wikipedia article Gravity in the desired directory.

1 import kdap

2 knol = kdap.knol()

3 knol.get_wiki_article('Gravity ',[output_dir])

Similarly, user can download the stack exchange portals data
using the following lines of code:

1 import kdap

2 knol = kdap.knol()

3 stack_list = ['3dprinting ', 'ai', 'arduino ', 'boardgames '

, 'chemistry ', 'chess ']

4 for portal in stack_list:

5 knol.download_dataset(sitename='stackexchange ',

portal=portal)

A.3 Extraction
Sampeling dataset from Wikipedia or Stack Exchage requires only
a few lines of code. For example, suppose you want random five
articles from each category of Wikipedia classes:

1 import kdap

2 knol = kdap.knol()

3 from random import sample

4

5 category_list = ['FA', 'GA', 'B', 'C', 'Start ', 'Stub']

6 articles = {}

7 for category in category_list:

8 articles[category] = sample(knol.

get_wiki_article_by_class(wiki_class=category), 5)

A.4 Frame-Wise Analysis
After downloading the relevant Knol-ML dataset, various analysis
methods can be used. To perform more granular level analysis, one
can retrieve the instances of a Knol-ML file as frames and use the
frame-based analysis methods. For instance, the following lines
of code extract the Wikipedia article’s revision as frames and find
information such as, contributor, time-stamp, score, etc.:

1 import kdap

2 knol = kdap.knol()

3

4 knol.get_wiki_article('Gravity ')

5 frame = knol.frame(file_name='Gravity.knolml ')

6

7 for each in frame:

8 print(each.get_editor ()) #prints each revision 's

editor 's name and unique id

9 print(each.get_timestamp ()) #prints the timestamp of

each revision 's creation date

https://www.kdnuggets.com/2014/08/four-main-languagesanalytics-data-mining-data-science.html.
https://www.kdnuggets.com/2014/08/four-main-languagesanalytics-data-mining-data-science.html.
https://bit.ly/2Z3tZK5

10 print(each.get_score ()) #prints the score (upvotes ,

downvotes) associated with each revision , if present

11 each.get_text(clean=True) #returns the clean text of

each instance

A.5 Complex Analysis
KDAP provides high-level complex methods to perform detailed
analysis on the knowledge building dataset. For example, a compar-
ison of knowledge building portals based on Global Gini coefficient
which require multiple steps of processing can be easily performed
using KDAP by writing the following lines of code:

1 import kdap

2 knol = kdap.knol()

3 stack_list = ['english ', 'superuser ', 'askubuntu ', '

gaming ', 'diy', 'tex']

4 gini_list = []

5 atoq_ratio = []

6 for stackportal in stack_list:

7 knol.download_dataset(sitename='stackexchange ',

portal=stackportal)

8 gini_list.append(knol.get_global_gini_coefficient(

dir_path='directory_path_of_data '))

9 questions = knol.get_num_instances(dir_path=

stackportal+'/Posts', instance_type='question ')

10 answers = knol.get_num_instances(dir_path=stackportal

+'/Posts', instance_type='answer ')

11 atoq_ratio.append(questions['questions ']/ answers['

answers '])

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data Representation and Analysis
	2.2 Tools and Parsers for Crowdsourced Portals

	3 Knol-ML: Knowledge Markup Language
	3.1 Core Layer
	3.2 Extension Mechanism

	4 KDAP Implementation Details
	4.1 Containers Functionality
	4.2 Knowledge Data Representation
	4.3 Time Complexity of Key Operations

	5 Evaluation
	5.1 Evaluation Based on Ease of Usage
	5.2 Evaluation Based on Usefulness
	5.3 Comparison of KDAP With Other Tools

	6 Resources
	7 Conclusion and Future Work
	Acknowledgments
	References
	A Getting Started With KDAP
	A.1 Installation
	A.2 Downloading Dataset
	A.3 Extraction
	A.4 Frame-Wise Analysis
	A.5 Complex Analysis

