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ABSTRACT
Participation inequality is a major challenge in any shared-resource
system. This is known as the “volunteer’s dilemma”: everybody
wants to benefit from a resource without contributing, expecting
others will do the work. This paper explores whether this problem
also arises in open source development. In particular, we analyze the
behaviour of GitHub users to assess whether the 90-9-1 principle
applies to open source. We study it both from a qualitative (ratio
of activity types) and a quantitative (total number of activities)
perspective and we show that the principle does not hold if we
consider the GitHub platform as a whole. Surprisingly, results are
reversed depending on the specific projects we look at. We believe
these results are useful to project managers to better understand
and optimize the behaviour of the community around their projects
and, as a side effect, they show the importance of diversity in sample
selection.

CCS CONCEPTS
• Software and its engineering → Open source model; Soft-
ware configurationmanagement and version control systems; •Human-
centered computing→ Open source software; Empirical stud-
ies in collaborative and social computing; Social network analysis.
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1 INTRODUCTION
GitHub is the most popular service to develop and maintain open
source software. In this service, each user interacts with many
others during the software development process: sending a pull
request, opening an issue, committing code, . . . These activities can
be studied to better understand the dynamics that drive an open
source software project, to provide insights about the developers’
behavior and to define organizational structures that improve a
project’s odds of success. To this end, GitHub can be studied as a
social network, as it exhibits many different social behaviors.

In particular, in this work we study whether participation in-
equality holds in open-source software development platforms.
Participation inequality is a well-known behavior [28] in many
shared-resource systems. It is related to the “tragedy of the com-
mons” [16, 18] scenario, where a limited resource is shared by
several members of a community. In this setting, selfish members
may acquire large quantities of the shared resource, depleting it
and leading to a worse outcome for the community as a whole.

Nevertheless, an open source project does not exactly fit the
“tragedy of the commons”: the project is a shared resource, but
using the project does not consume or deplete it as a resource [20].
In fact, open source projects benefit from having a large community
of users in a variety of ways [7, 32]:

• Users can provide useful feedback that can improve the qual-
ity of the project, e.g. by detecting bugs or suggesting rele-
vant features.

• Users are more likely to become contributors, as they are
already familiar with the project and benefit directly from
any improvement to the project.

• Popular projects are more likely to attract new contributions
and resources (e.g., donations), improving the long term
viability of the project.

In general, the sustainability of open source projects is an un-
solved problem [14], as significant effort is required to manage,
maintain and extend an existing project over a period of time. Hav-
ing a large pool of users can also contribute negatively to the sus-
tainability of an open source project.

On one hand, a large number of non-contributing users may
increase software maintenance costs, e.g., the effort required from
developers to manage the project’s backlog. For instance, in [4] a
sample of 3426 bug reports from the Eclipse open source project
included 36% that were marked as “duplicate”, “invalid”, “cannot be
duplicated” or “will not be fixed”.
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On the other hand, open source is a particular case of the vol-
unteer’s dilemma [13, 20]: participants can benefit from other’s
contributions even if they do not contribute themselves, but if no-
body cooperates the community loses as a whole. In this setting, a
large pool of free-riding users may lead to the social psychological
phenomenon known as diffusion of responsibility or bystander ef-
fect [36]: a lack of participation due to individuals assuming that
“somebody else will do it”. In particular, the strength of this phe-
nomenon has been shown to increase with the number of people
involved.

A recent example of this situation in the open source commu-
nity appeared in the OpenSSL project1. OpenSSL is a widely used
library to encrypt traffic for many websites and services. In 2014, a
severe vulnerability called Heartbleed was discovered in OpenSSL,
endangering the security and privacy of all users of the library.
The impact of the bug revealed the lack of resources available to
OpenSSL2, despite being a piece of critical infrastructure used by
many individuals, public and private organizations.

Thus, while having a large number of users in an open source
project is important, it is necessary to keep track of how they re-
late to active developers. When analysing the community around
an open source project, we must take into account that online
structures often exhibit power law distributions. For example, con-
sidering the number of inbound links to a website, a few popular
websites tend to concentrate the majority of the links [19]. In par-
ticular, regarding online content creation, studies have observed
that 90% of users are lurkers who never contribute to generate con-
tent, 9% of users provide only minor contributions, and 1% of users,
referred to as superusers, account for almost all the action [28]. For
this reason, this empirical statement is also known as the 90-9-1
principle.

We want to discover if this observation also applies to open
source, and in particular to the GitHub platform, which is our ob-
ject of study. That is, we consider whether most developers are
actually not producing anything while few users generate most of
the content, or if instead different behaviors arise. As a proxy for
distinguishing between passive and active developers, we measure
both the volume (number) and the value (quality) of their contri-
butions in terms of productivity and actual relevance to the project.
For the evaluation, we will consider Zipf’s law as our proxy to
understand the presence, or absence, of participation inequality [5].
This law was first formulated for corpora in natural language, show-
ing that the frequency of any word is inversely proportional to its
rank in the frequency table [15], and then it was extended to several
studies in physical and social sciences [6, 8, 27]. Also, variations to
this law were studied, such as Lotka’s law [29] and Price’s law.

The paper is structured as follows: Section 2 presents the related
work. Section 3 presents how the analysis has been designed. Sec-
tion 4 describes the output of the analysis, while Section 5 discusses
the results. Then, Section 6 considers the threats to validity, and
Section 7 draws the conclusions and proposes future work.

1https://www.openssl.org/
2http://veridicalsystems.com/blog/of-money-responsibility-and-pride/

2 RELATEDWORK
Participation inequality has been studied in several types of social
networks, with some differences regarding the conclusions. For
instance, some works focus on Digital Health social networks: in
[5, 34], the authors verify the presence and consistency of the
distribution and argue that superusers (1%) should be attracted
to the platform, as they are the key for the long-term success of
a platform. Also, classical social networks attracted this kind of
analysis, as in [2], where they describe how the 90-9-1 distribution
in Twitter exists but it is less pronounced. Wikipedia is another
target platform for studying such behavior: among all, [31] includes
temporal variables and several metrics to study the distributions,
arguing that the same aggregated inequality values follow several
different dynamics if these values are calculated monthly.

As for OSS platforms, we can distinguish two types of studies.
First, some works consider non-code contributions to a project [11],
such as e-mail messages in the project mailing list, bug reports,
requirement requests, . . .On the other hand, other papers focus on
source code contributions, such as commits to a software repository.

In the first group, [23] studies the Apache web server support
system. [25] verifies the inequality principle in requirements def-
inition using bioinformatics communities as target, and showing
that core developers provide most of the requirements. [22] studies
the discussion patterns in the KDE developer mailing list. Similarly,
[12] monitors the discussion in the developer forums devoted to
porting the Debian Linux distribution to 9 different processor archi-
tectures. Finally, [33] studies e-mail discussions in five open source
projects (Python, Gaim, Slashcode, PCGEN and TCL).

In the second group, [26] applies Lotka’s law to understand the
developers’ contribution on SourceForge and Linux Software Map.
Several studies have considered the applicability of the Pareto
principle (also called 80/20 rule) to open source communities.
This principle observes that a majority of contributions (80%) tend
to be produced by a small subset of the developers (20%), known
as the core team. For example, [17] studies 3 open source projects,
and finds that the number commits, mails in the project mailing list
and bug reports all follow the Pareto principle. Then, [35] evaluates
2,496 projects on GitHub and finds that between 40 and 87% of
them do not follow the Pareto principle. In contrast, [1] analyzes
661 open source projects and concludes that 77% of them have “hero”
developers: a subset of less than 20% of the users who contribute
80% or more of the commits.

This notion of “core team” has been further explored in many
other references, e.g., [30]. A typical metric used to evaluate the
core team is the bus factor [9, 35], the number of key developers
that would hamper the progress of the project if they left (or were
literally hit by a bus). This analysis can be very valuable from a
risk-assessment perspective, but does not reveal additional insights
about inequality in developer contributions.

In this paper, we study participation inequality in open source
software considering source-code contributions in GitHub. Our
analysis goes beyond the Pareto principle and considers whether
the 90-9-1 principle applies to developer contributions. These con-
tributions are not only quantified (number of commits) as in most
previous works, but also classified depending on the type of action,
i.e. a fork of a repository is not treated in the same way as a commit.

http://veridicalsystems.com/blog/of-money-responsibility-and-pride/
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Table 1: Description and categorization of GitHub events available in GHArchive dumps.

Event Description Type
WatchEvent A user stars a repository watch
ForkEvent A user forks a repository watch
CommitCommentEvent A commit comment is created interact
GollumEvent A Wiki page is created or updated interact
PullRequestReviewCommentEvent A comment on a pull request’s unified diff is created, edited, or deleted interact
IssuesEvent An issue is manipulated (opened, closed, . . . ) interact
IssueCommentEvent An issue comment is created, edited, or deleted interact
CreateEvent A branch or tag is created contribute
DeleteEvent A branch or tag is deleted contribute
PullRequestEvent A pull request is manipulated (assigned, unassigned, . . . ) contribute
PushEvent A push to a repository branch contribute
ReleaseEvent A release is published, unpublished, released, . . . contribute
MemberEvent A user accepts an invitation or is removed as a collaborator to a repository contribute

Furthermore, this analysis is performed in a large population of
projects of different types (“popular” and “random”) and also con-
siders the behavior of randomly selected users, outside the scope of
a specific project. For these reasons, we think this study provides
a more detailed picture of participation inequality in open source
software development.

3 METHODOLOGY
3.1 Types of participation in a project
In software development, participation can be defined andmeasured
in many different ways. On the GitHub platform, participation is
mainly related to the activities performed by each developer on
software repositories, either owned by her or by fellow developers.
User activities are tracked by GitHub and grouped into several
events, which are accessible from the official API3. These events
range from adding comments, starring a project, forking it, opening
issues,... to committing code. As each type of event requires a dif-
ferent degree of commitment from the user, we manually inspected
the description and the semantics of each event and we classified
them into three categories:

• Watch includes passive events, actions that require little
effort from the user and do not have an impact on the repos-
itory.

• Interact contains weakly active events, requiring minor ac-
tions and with a small impact on the repository.

• Contribute is associated with active events, requiring effort
or expertise and with a major impact on the repository.

There is some degree of subjectivity in this taxonomy, as some
events could be considered either passive or active depending on
the interpretation. In particular, ForkEvent is the most complex
to classify: on one hand, it can be considered as a “watch” event
since it does not provide any improvement to the project directly,
while on the other hand it replicates a complete repository, thus
generating content on the platform. This could suggest consider-
ing a new intermediate level of interaction between “watch” and

3https://developer.github.com/v3/activity/events/types/

“interact”. Nevertheless, in order to facilitate the analysis of the 90-
9-1 principle we decided to preserve a taxonomy with three levels
and classify the ForkEvent as a “watch” event. Table 1 summarizes
the list of available GitHub event types, their semantics and their
categorization.

Given this categorization, it is clear that a user can perform
events belonging to more than one category. In order to classify
users into a single category (Watchers, Interactive, Active) we set
as basic criteria that a user belongs to the most active category for
which it has an activity, e.g.: if it has at least one activity of the
category contribute, then he/she is a strongly active user. For this
preliminary analysis, we do not consider any threshold on the total
volume of activities.

3.2 Research questions
We can formalize the objectives of our study by defining the fol-
lowing research questions:

• RQ1: Do open source software developers exhibit participa-
tion inequality in their contributions?

• RQ2: Do open source software projects suffer from partici-
pation inequality?

• RQ3:Does the popularity of an open source software project
affect participation inequality?

In a platform like GitHub, a user can participate in several
projects. With this research questions we aim to discover whether
the 90-9-1 principle holds for the GitHub platform as a whole (i.e.,
most users are watchers with few contributors) or if this only hap-
pens in specific projects. In particular, we are interested in the
impact of project popularity: projects with many “stars” (GitHub’s
notion of favorite projects) attract larger number of developers, and
may therefore exhibit a more pronounced trend with respect to
participation inequality.

For this reason, answering RQ1 will require us to study a pop-
ulation of GitHub users, considering their activity across different
projects; while RQ2 and RQ3 will require us to study a population
of GitHub projects, selected randomly in the case of RQ2 or by pop-
ularity in the case of RQ3. We believe that analyzing participation
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Table 2: Classification of GitHub users in each dataset.

dataset contributors ratio interactors ratio watchers ratio
10K random users 0.8160 0.0726 0.1112
500 random projects 0.2284 0.0735 0.6980
500 top projects 0.0214 0.1048 0.8737

inequality at the platform and project levels is relevant, as this
dimension is not typically considered in other social networks.

3.3 Data collection
In order to verify the distribution with the presented approach, we
collected a log of all the events (pull requests, issues, comments, . . . )
that occurred on Github in 2018 from GHArchive4, consisting in
478M activities contained in zipped JSON archives. The collection
has been performed using open endpoints that allow to compress
in a single file all the events from a target day, month or hour
using a specific syntax for the endpoint itself. For example, wget
http://data.gharchive.org/2018-01-01..31-0..23.json.gz
is the command to download an archive that includes all the events
from GHArchive that occurred during the month of January 2018.

A second step is needed in order to decompress the archive and
extract the information: tuples (user_id, repository_id, event_type,
event_timestamp) for a set of target projects are saved in CSV files,
which are the input for the analysis.

4 RESULTS
Considering our research questions, three different datasets were
sampled:

• Random Users: Activities related to any project in GitHub
performed by 10K randomly selected users during 2018, for
a total number of 1.1M events.

• Random Projects: Activities performed during 2018 re-
lated to 500 random projects, which involved 2803 users
and 24795 events.

• Top Projects: Activities related to the 500 most starred
projects of 2018, performed in the same year by 736650
users, covering 3M events.

To measure distribution of users’ activities with respect to their
quality, we proceed as follows:

(1) Calculate the normalized number of activities in each cate-
gory for each user;

(2) Sort users by contribution and interaction percentage in
decreasing order, i.e. most active first.

Charts in Figure 1 show the distribution of GitHub developers for
the three sample datasets. Each vertical line in the chart depicts the
activity of a single user, showing the proportion of activities of each
type where she was involved (dark red: contribute; red: interact;
light red: watch). For instance, a vertical line in dark red means a
user that only contributes. Vertical lines with different shades of red
depict users that participated in different types of events. Users are
ordered from left (most active) to right (least active), starting from
users that only contribute, then those that contribute and interact,
4http://www.gharchive.org

then those that do not contribute but interact, and finally those that
only watch. Visually, darker areas in the chart correspond to more
active groups of users.

In order to measure whether this user behavior follows the 90-
9-1 principle, we need to classify users in three categories from
least to most active. To this end, using the definition established in
Section 3, developers are associated with the most active category
for which they have an activity. The percentage of users for each
assigned category in each of the datasets is presented in Table 2.

As a remark, we need to underline that users with few activities
could be considered as active users, because they have higher ratios:
for instance, if a user has 1 contribution and 1 interaction, then it
has ratio 1/2. This situation happens often, and it is illustrated by the
“dents” in the charts: these are developers with few activities and,
by consequence, sharply defined ratios like 1/2, 1/3, 2/3, . . . This ob-
servation shows that we need to consider the volume of activities,
too, if we want to have a better picture of the phenomenon.

We calculate the log-log distribution for the total number of
activities to analyze the overall volumes: resulting distributions are
presented in Figure 2. The blue line is the empirical counting: each
dot represents the total number of user’s activities in logarithmic
scale. The black dashed line is the theoretical power law curve
that follows Zipf’s Law. In this case, the overall activities of the
users are shown, without distinction on the categorization: the most
active developers set the head of the distribution with thousands of
activities for few users, while most passive ones reside in the tail,
with thousands of users that perform one activity only.

5 DISCUSSION
The results presented in previous section are open to a wide range
of discussion points. The first remarkable conclusion is that partici-
pation inequality varies when consider the GitHub platform as a
whole and when considering specific projects.

Regarding RQ1, developers do not exhibit participation inequal-
ity in their contributions: as we can see in Table 2, GitHub users
tend to be active contributors (81%). Considering RQ2, random
GitHub projects exhibit some degree of participation inequality
(70% of watchers versus 23% of contributors), but do not reach a
90-9-1 distribution. Only when looking at popular projects (RQ3)
we notice a 90-9-1 distribution, with 2% of contributors and 87% of
watchers.

This data indicates most developers are productive in the context
of their own projects, while they mostly become lurkers looking
for inspiration more than providing real contributions when they
move to others’ projects.

As a consequence, the bigger and more important a project is, the
larger is the ratio of observers with respect to contributors. Look-
ing at Figures 1 center and bottom, it is evident that contributors
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10k random users

500 random projects

500 top-starred projects

Figure 1: User activities on 3 datasets: (top) 10k random users, (center) 500 random projects, (bottom) 500 top-starred projects.
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Figure 2: Distribution of users belonging to 500 random projects (left) and 500 top projects (right).

decrease by 10 times, which is the actual increase in the watchers.
On the other hand, focusing on the volume of activities produced
(Figure 2), we observe that top projects have many developers that
generate many activities, while random ones have few core con-
tributors. This difference may come from the fact that random
projects are quite small with respect to top projects, and it shows
the challenge of growing a project with contributors rather than
observers.

These insights can be very important from a project management
perspective, because they help managers to better understand and
optimize the behavior of the community around their projects. They
can tune their actions based on whether the goal is to attract (core)
contributors or to increase project’s visibility or they can use the
analysis dimensions we introduced to discover the presence of
similar projects and how they compare with respect to them.

As a final observation, the presented results are extremely dif-
ferent in the 3 samples we studied. Diversity in software projects is
a complex task, because it lacks of formal definitions, dimensions
and metrics. In this study we provided several dimensions (user
vs project, project popularity) to highlight a strong difference that
would bias our findings: any study should carefully select the sam-
ples in order to provide valuable insights, trying to maximize the
diversity of sample projects to have a better picture of the behaviors.

6 THREATS TO VALIDITY
Our work is subjected to a number of threats to validity which we
classify into: (1) internal validity, which is related to the inferences
made based on the application of our research methodology; and (2)
external validity, which discusses the generalization of our findings.

Regarding the internal validity, our dataset construction process
relied on the information accessible from the official GitHub API.
The API provide access to events related to official logged-in users,
while nothing is known about the external observers that access
the website: that is, the watchers category is only a subset of the
entire true watchers. In addition, the classification of events as
watch, interact or contribute is based on our rationale about the
participatory semantics we assigned to each event, but different

groupings could be still valid and provide different results. Similarly,
users are assigned to the most active category they generated an
event, without considering any threshold or advanced technique to
assign users to categories.

As for the external validity, note that our sample is based on a
relatively small number of GitHub projects [21]. Even if we compare
a random selection vs the top selection to minimize potential biases,
our results should not be generalized to all GitHub projects or
to projects in other software development platforms or hosted in
private repositories.

7 CONCLUSION
We have shown how participation inequality is also present on
the open source world both from a qualitative and a quantitative
perspective, highlighting that its impact varies depending on the
considered dimensions. On one side, the principle is reversed with
respect to classical studies, with most of the users that are active and
productive if we consider the GitHub platform as a whole, while on
the other hand the inequality becomes evident if we consider the
activities inside projects. In addition, we showed that top projects
have the strongest separation, almost fitting the 90-9-1 distribution,
while random projects have more relaxed ratios: the most popular
projects are treated as source of inspiration from most users, who
then focus on their own code and projects.

We believe this analysis will help project managers to better
understand the participation level of the community around their
projects and what actions they can do to steer it one way or the
other (to a more passive or a more active role, depending on their
goals). As a side effect, the large difference in the results of the two
sets of projects highlights once again the importance of a suitable
sampling strategy to select relevant projects [10] (where suitable
and relevant need to be defined based on the goals of the study)
and the need of better tools to build diverse samples [24].

As further work, we will deepen the analysis considering more
levels of categorization for activities. In addition, the temporal
dimension (when an event happened) could be included in the anal-
ysis, showing what are the dynamics that generate the distributions
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we showed in this work. Finally, another possibility is to focus
on lurkers and analyze if open source projects can benefit from
them [3].
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