
How to characterize the health of an Open Source Software
project? A snowball literature review of an emerging practice

Johan Linåker
johan.linaker@ri.se

RISE Research Institutes of Sweden
Lund, Sweden

Efi Papatheocharous
efi.papatheocharous@ri.se

RISE Research Institutes of Sweden
Lund, Sweden

Thomas Olsson
thomas.olsson@ri.se

RISE Research Institutes of Sweden
Lund, Sweden

ABSTRACT
Motivation: Society’s dependence on Open Source Software (OSS)
and the communities that maintain the OSS is ever-growing. So
are the potential risks of, e.g., vulnerabilities being introduced in
projects not actively maintained. By assessing an OSS project’s
capability to stay viable and maintained over time without interrup-
tion or weakening, i.e., the OSS health, users can consider the risk
implied by using the OSS as is, and if necessary, decide whether to
help improve the health or choose another option. However, such
assessment is complex as OSS health covers a wide range of sub-
topics, and existing support is limited. Aim: We aim to create an
overview of characteristics that affect the health of an OSS project
and enable the assessment thereof.Method: We conduct a snow-
ball literature review based on a start set of 9 papers, and identify
146 relevant papers over two iterations of forward and backward
snowballing. Health characteristics are elicited and coded using
structured and axial coding into a framework structure. Results:
The final framework consists of 107 health characteristics divided
among 15 themes. Characteristics address the socio-technical spec-
trum of the community of actors maintaining the OSS project, the
software and other deliverables being maintained, and the orches-
tration facilitating the maintenance. Characteristics are further
divided based on the level of abstraction they address, i.e., the OSS
project-level specifically, or the project’s overarching ecosystem
of related OSS projects. Conclusion: The framework provides an
overview of the wide span of health characteristics that may need
to be considered when evaluating OSS health and can serve as a
foundation both for research and practice.

CCS CONCEPTS
• Software and its engineering→Open sourcemodel; •Human-
centered computing → Open source software.

KEYWORDS
Open Source Software, Software Ecosystem, Health, Sustainability,
Software Quality.

This work is licensed under a Creative Commons Attribution International
4.0 License.

OpenSym 2022, September 7–9, 2022, Madrid, Spain
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9845-9/22/09.
https://doi.org/10.1145/3555051.3555067

ACM Reference Format:
Johan Linåker, Efi Papatheocharous, and Thomas Olsson. 2022. How to
characterize the health of an Open Source Software project? A snowball lit-
erature review of an emerging practice. In The 18th International Symposium
on Open Collaboration (OpenSym 2022), September 7–9, 2022, Madrid, Spain.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3555051.3555067

1 INTRODUCTION
Open Source Software (OSS) makes up a pivotal building block in
today’s digital infrastructure, both in industry and society at large.
Due to the nature of OSS, organizations thereby to a large extent
become reliant on the external maintenance of the different OSS
projects carried out within their respective communities. If an OSS
project is not actively maintained, the risk of vulnerabilities being
introduced (either intentionally or not) may rise [55]. These can in
turn spread with costly consequences within and between organi-
zations, potentially causing harm to the whole business ecosystems
and society in general (cf. Heartbleed and Log4Shell. Organizations,
therefore, need to consider the health of the OSS projects that they
use to manage the risk coupled with the usage, or dependence of
thereof [12, 120].

With OSS health, we consider an OSS project’s capability to stay
viable and maintained over time without interruption or weaken-
ing. A topic that we find complex given the wide variety of sub-
topics included on the socio-technical spectrum (e.g., toxicity [41],
sponsorships [95], marketing [88], diversity [47], badging [131],
burnout [89], newcomer barriers [122]). Further complexity is in-
troduced as OSS projects seldom can be considered in isolation
due to complex dependency networks of up- and downstream
projects [24, 132], implying that both the focal project and its over-
arching ecosystem of dependencies need to be considered.

Models and approaches have been developed by extant research
to evaluate OSS projects from different perspectives, such as sourc-
ing [75, 120], alliance partnerships [118], quality [141], and software
ecosystem health [64]. These approaches often have a specific focus
such as on source code quality [141], internal capabilities to con-
sume the OSS [12], or the potential to build professional business
relations through the community [118]. In contrast, there is still a
lack of a holistic view of the wider area of research that OSS health
implies (see e.g., [3, 50, 107, 122, 126]), as well as processes that can
help organizations to evaluate OSS projects. Interest has, however,
emerged around the topic, both in academia 1, industry [55], and
community settings 2. Of these, one notable exception exists in the
case of the CHAOSS project [55], a community project collabora-
tively developing health metrics within themes such as value, risk,

1https://soheal.github.io/
2https://sustainoss.org/

https://orcid.org/0000-0001-9851-1404
https://orcid.org/0000-0002-5157-8131
https://orcid.org/0000-0002-2933-1925
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3555051.3555067
https://doi.org/10.1145/3555051.3555067
https://soheal.github.io/
https://sustainoss.org/

OpenSym 2022, September 7–9, 2022, Madrid, Spain Johan Linåker, Efi Papatheocharous, and Thomas Olsson

or evolution. Within each theme, metrics are then provided under
several focus areas, each with a specific goal that the metrics aim
to provide answers to, e.g., to “[l]earn about the types and frequency
of activities involved in developing code” under the focus area Code
Development Activity within the Evolution theme3. No instructions
are provided on which metrics to choose. This is instead up to each
user to decide.

Extant research does, however, not provide an overview of this
wide area of research that OSS health implies (see e.g., [3, 50, 107,
122, 126]), even though community and industry-oriented initia-
tives are starting to emerge [55]. In this study, our goal is to address
this gap by initializing the development of an assessment frame-
work that can provide a comprehensive overview of the health of
an OSS project. Specifically, we seek to answer the question what
characteristics affect the health of an OSS project?

To address the question, we conducted a snowball literature
review [140] with a start set of 9 highly cited papers [3, 26, 50, 52,
64, 107, 122, 126, 132] after which 93 papers were identified in the
first iteration, and 53 additional in a second. We structurally coded
the characteristics, related metrics, and underpinning purpose for
a paper’s analysis based on an a-priori framework derived from
the ecosystem health literature [64, 82]. Through axial coding, we
then designed a framework consisting of 107 health characteristics
among 15 themes.

2 RESEARCH DESIGN
We conducted a literature review to answer the research ques-
tion on OSS health characterization using a snowballing search
strategy [140]. Using a start set of papers, snowballing activity is
conducted backward and forwards in iterations. In the backward
snowball search, references from a previously included paper in
the start set are each reviewed by their title, and place and context
in the paper where the reference is used. In a forward snowball
search, Google Scholar is used to identify papers citing a previously
included paper. Papers are reviewed by their title, followed by their
abstracts, and a full read, incrementally until a decision can be made
on whether the paper should be included or not.

Typically, the pattern continues until no new papers are iden-
tified [140]. In this study, however, the goal is not to conduct a
systematic literature review. Rather, we aim to collect a comprehen-
sive knowledge base that can provide an understanding of what
characteristics affect the health of an OSS project (RQ), and serve
as a foundation for an initial design of an artifact that, iteratively,
can be validated and improved in future work through empirical re-
search. Hence, we favor the saturation of characteristics rather than
new papers. Below, we describe our research design and process in
further detail.

2.1 Inclusion and Exclusion Criteria
In line with our definition of OSS health, along with guidance
from related work [64, 83], we defined the following inclusion and
exclusion criteria (denoted IC and EC respectively):

IC Papers on the growth, attraction, or retention of contributors
to OSS projects.

3https://github.com/chaoss/wg-evolution

Figure 1: Overview of the number of papers identified and
finally included in the first and second iteration of forward
and backward snowball searches. Numbers presented in the
Total columns are excluding duplicates.

IC Papers on the maintainers’ ability to maintain their OSS
projects.

IC Papers on the evaluation of quality or risks of an OSS project
related to its health.

IC Papers explicitly mentioning the keywords [64, 83] “health”,
“sustain*”, “propensity”, “longevity”, or “survival” in the con-
text of OSS in the title, abstract, introduction or conclusion
section.

EC Not explicitly focused on OSS or focused on (potential) con-
tributors’ motivations to engage in an OSS project.

EC Published before 2012 and not available in full text.
EC Grey and white literature, including book chapters, reports,

and student theses.
EC Idea and opinion papers, extended abstracts, duplicate stud-

ies, secondary studies.
EC For extension works most recent published work is included,

and others excluded.
EC Non-English papers.

2.2 Start set
As a first step, a start set of papers was to be identified as a baseline
for the snowballing iterations. Based on keyword searches using
Google Scholar it was found that ”health”, ”sustainability”, ”sustain”
and ”survival” were used interchangeably in alignment with our
previously defined definition of OSS health. A search string was
constructed accordingly and contextualized to reflect both general
and ”ecosystem”-focused literature:

(”open source” OR ”open-source”) AND (”project” OR ”ecosystem”)
AND (”health” OR ”sustainability” OR ”sustain” OR ”survival”)

This search string was applied through Google Scholar to gain
non-biased recommendations to any specific publishing venue [140].
From the search, three studies were identified as highly cited and
seminal papers in the area [52, 64, 132] among the first 20 results
presented, all passing defined criteria.

Due to the rather wide definition of OSS health, which is further
emphasized by Manikas and Hansen [83], we decided to specifically
look for systematic reviews that may reflect different aspects or
areas of the OSS health literature. We, therefore, again using Google
Scholar, applied the adapted search string:

(”open source” OR ”open-source”) AND (”project” OR ”ecosystem”)
AND (”health” OR ”sustainability” OR ”sustain” OR ”survival”) AND
”systematic” AND (”review” OR ”examination”)

Among the top 20 presented results, five reviews were identi-
fied as relevant secondary studies [3, 26, 50, 107, 122]. As they are

https://github.com/chaoss/wg-evolution

How to characterize the health of an Open Source Software project? A snowball literature review of an emerging practice OpenSym 2022, September 7–9, 2022, Madrid, Spain

secondary studies, they are not included in our analysis and only
make up a starting point to find primary studies relevant to our
study.

2.3 First Iteration
In the first iteration, the first author conducted a forward and
backward snowball search based on the previously defined start set.
The data collection was originally performed in January 2022 but
repeated in correlation with the second iteration between the 22nd
to 25th of May 2022 to identify recent publications. The (overall)
search resulted in an initial set of 150 tentatively included papers
from a total of 1206 papers (see Fig. 1).

In the following step, all three authors independently reviewed
a sample of 10 percent (i.e., 15 papers) of the tentatively included
papers to decide if papers would be included or not. In the same
process, the authors also extracted data where applicable. After
the independent review process, all three authors discussed and
compared findings to arrive at a common understanding of the
interpretation and final application of the inclusion and exclusion
criteria, as well as the performance of the data extraction process.
We continued by separately reviewing and coding papers based
on the a-priori codes: Purpose (P) for analyzing or discussing the
health of an OSS project; Characteristics (C) that affects or reflects
the health of an OSS project; Metrics (M) that can quantify, or
qualitatively describe, a characteristic.

During the continued review and coding process, two additional
negotiations were performed in terms of agreement of inclusion
and coding, each time picking a 10 percent random sample with
five papers coded from each of the three authors. This rendered in
an overall sample of 30 percent (i.e., 45 papers) being co-analyzed
by the three authors. Overall agreement was found on all three
occasions with minor adjustments coming out as an effect of the
negotiations, e.g., whether a certain extracted element should be
considered a purpose, characteristic or metric, or whether a paper
should be included or excluded based on the criteria. In the end, 93
papers were included and coded in the first iteration.

Following, we performed a structured coding of the character-
istics based on an a-priori-defined health framework inspired by
the work of Manikas and Hansen [83] and Jansen [64]. The frame-
work consists of two dimensions; the level of abstraction, and the
socio-technical dimension.

• Level of abstraction
– Network-level concerns characteristics related to the over-
arching software ecosystem or network that theOSS project
is part of, e.g., a language-specific package ecosystem as
NPM which in turn consists of multiple OSS components,
or the OpenStack ecosystem which in turn consists of
numerous of integrating sub-module OSS projects.

– Project-level concerns characteristics focused explicitly on
the OSS project.

• Socio-technical dimension
– Actors concerns the community of developers and users
that is part of the OSS project or its overarching software
ecosystem.

– Software concerns the OSS and related artifacts (e.g., doc-
umentation) that is being developed by the community

of actors, or individuals, that are either part of the OSS
project or its overarching ecosystem.

– Orchestration concerns the governance exercised in terms
of development, collaboration, and usage of the software
by its community of actors, either within an OSS project
or its the overarching ecosystem.

After the structural coding, an axial coding process was per-
formed within each of the six categories of codes that follows by
the two dimensions.

2.4 Second iteration
In the second iteration, the first author performed the forward
snowball, while the third author performed the backward snowball,
each resulting in 71 and 68 tentatively included papers out of 1901
and 658 papers respectively. The data collection was performed
from the 22nd to the 25th of May 2022. After a second review, 53
papers were included making a total of 146 papers, also considering
the first iteration, distributed between 2012-2022. The 53 papers
were coded using the structured and axial coding process as the
first iteration.

In the axial coding, the code bookwith themes and characteristics
generated from the first iteration, structured as per the a-priori
framework, was used as a foundation. The coding process rendered
in slight modifications, most prominently with the emergence of
a new theme focused on security aspects. On the general level,
however, we experienced a saturation in the type of characteristics
of health that appeared why we decided to stop.

The final framework was verified through peer debriefing and
discussions including all three authors and is further presented in
the following section.

3 RESULTS
The assessment framework consists of 107 health characteristics
divided among 15 themes each providing different perspectives on
OSS health (see tables 1, 2 and 3). Below we provide a summary per
theme along with an overarching question contextualizing how the
underpinning characteristics affect the health of an OSS project.
Codes are provided in parenthesis per characteristic (e.g., a-com-1,
meaning [actors-category] - [communication-theme] - and [first
characteristic] in the alphabetical order) connects to what papers
are related to the characteristic as presented in tables 1, 2 and 3.
We refer readers to the supplementary material to explore metrics
related to the characteristics as identified in the literature, and to
investigate the framework in-depth [78].

3.1 Actors-oriented characteristics
Communication: With communication, we consider the social in-
teractions internally between the actors within an OSS community,
and externally by the community in their outward-facing communi-
cation. They help to answer the question on how productive an OSS
project is in planning and discussing the evolution and development
of its technical and non-technical deliverables.

Literature highlights several ways in which the communication
takes place, such as mailing lists, issue trackers, and pull-requests.
The responsiveness shown by the community through these chan-
nels was a commonly referred to characteristic, both considering

OpenSym 2022, September 7–9, 2022, Madrid, Spain Johan Linåker, Efi Papatheocharous, and Thomas Olsson

Table 1: Overview of actors-oriented health characteristics per theme. Characteristics listed under unique identifiers linking
to the respective codes in the online supplementary material [78], P = project level, and N = network-level focus.

Actors / Communication
a-com-1 Response-quality P: [138], [121] [58] [75]
a-com-2 Response-time P: [10], [55], [121], [23], [118], [58], [75], [67], [123], [22]
a-com-3 Social activity P: [86], [138], [24], [58], [75], [12], [67] N: [92]
a-com-4 Visibility P: [48], [49], [41], N: [92]
Actors / Culture
a-cult-1 Conflicts P: [20], [58], [45]
a-cult-2 Contributor satisfaction P: [58], [59]
a-cult-3 Contributor recognition P: [136]
a-cult-4 Language heterogeneity P: [58]
a-cult-5 Openness P: [121], [23], [118], [58] [103], [75]. [22]
a-cult-6 Sentiment P: [129], [53], [121], [106], [35], [58], [88], [43], [123]
Actors / Finance
a-fin-1 Financial stability P: [90], [138], [48], [71], [49]
a-fin-2 Financial support P: [138], [95], [71], [147], [135], [110]
Actors / Diversity
a-div-1 Application diversity P: [136] N: [92]
a-div-2 Demographic diversity P: [104], [48], [49], [18], [72], N: [47]
a-div-3 Organizational diversity P: [105], [136], [36]. [37], [132], [64], [12], N: [25], [100], [64]
a-div-4 Target users P: [138], [113]
a-div-5 Technical knowledge P: [104]
Actors / Popularity
a-pop-1 Competing projects P: [20], [132]
a-pop-2 End-user popularity P: [87], [136], [103], [145]
a-pop-3 External community interest P: [131], [148], [94], [136], [75], [109], [11], [145], [85], [12], [65], [67], [51]
a-pop-4 Project popularity N: [136], [92]
a-pop-5 SDG P: [59]
a-pop-6 Size P: [75]
a-pop-7 Technical adoption P: [145]
Actors / Stability
a-stab-1 Age P: [94]
a-stab-2 Attrition P: [108], [79]
a-stab-3 Ecosystem growth N: [100]
a-stab-4 Forks P: [112], N: [20], [23]
a-stab-5 Growth P: [133], [108], [48], [49], [79]
a-stab-6 Knowledge concentration P: [6], [111], [48], [13], [23], [49], [5], [44], [42], [99]
a-stab-7 Life-cycle stage P: [113], [20]
a-stab-8 Predicted evolution P: [76], [31], [142], [74], [98], [81], [12]
a-stab-9 Project growth N: [133], [100], [92]
a-stab-10 Retention P: [77], [108], [115], [124], [55], [36], [35], [89], [39], [9], [38], [73], [144]
a-stab-11 Size P: [48], [49], [36], [135], [135], [12], N: [91], [92]
a-stab-12 Turnover P: [46], [104], [146]
Actors / Technical activity
a-tech-1 Contributors’ development ac-

tivity
P: [21], [58], [75]

a-tech-2 Efficiency P: [131], [113], [121], [19], [27], [54]
a-tech-3 Maintainers’ development ac-

tivity
P: [23], [139], [75], [132]

a-tech-4 Non-code contributions P: [15], [130]
a-tech-5 Overall development activity P: [87], [133], [90], [97], [113], [24], [94], [136], [101], [21], [48], [71], [49],

[118], [66], [36], [103], [75], [137], [145], [4], [68], [134], [12], [132], [67], N:
[7], [93], [25], [100], [47], [64], [92]

How to characterize the health of an Open Source Software project? A snowball literature review of an emerging practice OpenSym 2022, September 7–9, 2022, Madrid, Spain

response time (a-com-2), and response quality (a-com-2), e.g., in
terms of the level of detail, complexity, and correctness. Another
characteristic adding to the response-time is the general social ac-
tivity (a-com-3), or frequency, in the communication of the OSS
project, e.g., the number of issues opened or comments posed in a
certain time interval. Outward-facing communication and visibil-
ity (a-com-4) was another aspect considered, e.g., how active the
community is in terms of social media presence.

Culture: Cultural characteristics help to answer the question
how able a community is to facilitate a positive and inclusive col-
laboration and dialogue among existing and potential actors. They
further help to contextualize the social behavior and norms ex-
pressed and experienced by the individuals present in a community.
The literature emphasizes the experience of contributors, especially
in terms of experiencing a personal satisfaction (a-cult-2), and be-
ing recognized for their contributions (a-cult-3), independent of
the contribution type and complexity. The presence of conflicts
(a-cult-1) and how these are managed by a community, as well as
the general openness (a-cult-5) in terms of the community’s mindset
in welcoming and encouraging contributions, inputs, and questions
are also highlighted by several studies. The general sentiment and
tone (a-cult-6) in the communication is another commonly referred
to characteristic in literature, where the presence of negative (e.g.,
insulting, entitled, arrogant, trolling, or unprofessional) and posi-
tive qualities (friendliness, welcoming, inclusion) was investigated.
Language heterogeneity (a-cult-4), or rather the lack of a common
language in a community, was a specific concern, investigated by
one study, that may cause cross-communication hurdles.

Diversity: Diversity-related characteristics describe the OSS
project’s or its overarching ecosystem’s ability to be receptive to
diversity and self-renew itself, thereby helping to answer the ques-
tion how able a community is to accommodate and attract a diverse
community of actors, while enabling existing and new use cases of the
OSS project. Among the literature surveyed, multiple angles were
covered. One study highlighted the aspect of diversity in the use
cases and applications based on the OSS project among its users
(a-div-1), aligning with the more general organizational diversity
(a-div-3) aspect considering e.g., the size, location, financial stability,
business model and influence of the organizations engaged in the
community. Demographic diversity (a-div-2), another multifaceted
aspect was also investigated, e.g., in terms of gender, culture, and
geographical situation. The level and diversity regarding the techni-
cal knowledge (a-div-5), e.g., considering programming languages,
among individuals was also raised as the diversity among the target
users (a-div-4) of the OSS project, e.g., tech savvy or general users.

Finance: Finance-related characteristics describe the financial
support (a-fin-2) in terms of funding and sponsorship provided to or
accepted by the OSS community, and the general financial stability
(a-fin-1) of the actors in the community that are maintaining or
contributing to the OSS project. These characteristics thereby help
to answer the question how financially viable actors are in an OSS
community in terms of being able to dedicate their time and resources
to the long-term maintenance of the OSS project.

Popularity: Characteristics related to popularity describe the
general external interest in the OSS project or its overarching
ecosystem, helping to answer the question how popular and well-
adopted an OSS project is among existing and potential end-users

and contributors. End-user popularity (a-pop-2), i.e., the level of
interest displayed in the project by its consumers, and the exter-
nal community interest (a-pop-3) shown towards the OSS project
were the two most highlighted characteristics in this theme. On an
ecosystem-level, one study highlighted the general popularity of
the projects hosted within the ecosystem (a-pop-4). The current
size of the OSS community in terms of users and developers (a-pop-
6), any connection between the OSS project’s use case(s) and the
Sustainable Development Goals (a-pop-5), along with the technical
inclusion and adoption of an OSS project in downstream software
implementations were other characteristics highlighted (a-pop-7).
The presence of competing projects was further emphasized as a
characteristic that may affect the popularity (a-pop-1).

Stability: Characteristics related to stability describe the re-
silience and robustness of the OSS community or its overarching
ecosystem in terms of their population, helping to answer the ques-
tion how capable the OSS project is in terms of preserving a critical
population of actors with the capability to maintain the OSS project
long-term. The growth (a-stab-5), retention (a-stab-10), attrition
(a-stab-2), and overall turnover (a-stab-12) and size (a-stab-11) of
users and developers of an OSS project are characteristics thor-
oughly investigated by literature. A related characteristic also thor-
oughly studied is the concentration or distribution of contributions
and knowledge to certain individuals or groupings within an OSS
project, commonly quantified and described through the bus- or
truck factor of a community (a-stab-6). Some studies focused on
characterizing OSS projects in terms of their state from a life-cycle
perspective (a-stab-7), while others were more forward-looking
and focused on predicting future development activity in the OSS
project, e.g., in terms of growth or dormancy (a-stab-8).

Technical activity: The technical activity covers characteris-
tics describing the overall technical activity, helping to answer the
question how productive an OSS project is in evolving and developing
its technical and non-technical deliverables. The theme may, in con-
trast to the communication theme be considered as the technical
pulse of a community and a sign of its productivity, both in terms
of technical and non-technical contributions towards the evolution
of the concerned OSS project. As per the literature, the technical
activity can be considered and evaluated both from the maintainers’
(a-tech-3), contributors’ (a-tech-1), and overall community perspec-
tive (a-tech-5). Effectiveness and ease of an OSS project in managing
and moving the development forward, e.g., in accepting and review-
ing issues and pull-requests, is also highlighted as an important
aspect (a-tech-2). Studies also highlight the importance of evalu-
ating the activity in terms of non-code contributions specifically
(a-tech-4).

3.2 Software-oriented characteristics
Development process: Characteristics relating to the develop-
ment process describe the quality and formality of the processes
and practices for how the development is performed, addressing
the question how capable a community is in terms of its development
process to maintain the OSS project to a high quality long-term. The
most highlighted characteristic concerns how the onboarding of
newcomers to the project is performed, e.g., in terms of mentorship,
the introduction of newcomers, and listing of good issues to start

OpenSym 2022, September 7–9, 2022, Madrid, Spain Johan Linåker, Efi Papatheocharous, and Thomas Olsson

Table 2: Overview of software-oriented health characteristics per theme. Characteristics listed under unique identifiers linking
to the respective codes in the online supplementary material [78], P = project level, and N = network-level focus.

Software / Documentation
s-doc-1 Completeness [71], [121], [23], [118], [12], [22]
s-doc-2 Complexity [121], [73]
s-doc-3 Currentness P: [131], [121], [58], [123]
s-doc-4 Development docs P: [20], [121], [58], [103], [75], [22], [123]
s-doc-5 General docs P: [20], [103], [75]
s-doc-6 Language availability P: [58]
Software / Development process
s-dev-1 Coding conventions P: [121], [75], [137]
s-dev-2 Contribution process P: [121], [58], [73]
s-dev-3 Coordination P: [150]
s-dev-4 On-boarding P: [125], [14], [80], [10], [121], [23], [103], [59], [8], [123], [73], [40]
s-dev-5 Process maturity P: [48], [13], [49], [137], [123]
s-dev-6 Quality assurance P: [131], [20], [71], [121], [103], [75], [22]
s-dev-7 Support P: [12], [65], [62]
Software / License
s-lic-1 Flexibility P: [71]
s-lic-2 Implications P: [117], [138], [113], [20], [118], [135], [12], [132], [114]
s-lic-3 Legal jargon P: [58]
s-lic-4 Management P: [58]
Software / General factors
s-gen-1 Age P: [117]
s-gen-2 Application domain P: [113]
s-gen-3 Platform support P: [117], [75]
s-gen-4 Project complexity P: [121], [137], [22]
s-gen-5 Project independence P: [75]
s-gen-6 Standards compliance P: [75]
s-gen-7 Type of technologies P: [117], [20], [10], [58], [75], [22]
Software / Scaffolding
s-scaff-1 Build environment P: [121], [60], [123]
s-scaff-2 Continuous integration P: [20], [22]
s-scaff-3 Conversation history P: [58]
s-scaff-4 Infrastructure accessibility P: [121], [118], [58], [103], [132]
s-scaff-5 Infrastructure availability P: [103]
Software / Security
s-sec-1 Dependencies P: [71], [121]
s-sec-2 Dependency management P: [131], [34], [75], [32], [63], [56]
s-sec-3 Security practices P: [119], [75]
s-sec-4 Trustworthiness P: [75], [12]
s-sec-5 Vulnerability persistence P: [33], N: [102], [1]
s-sec-6 Vulnerability presence P: [28], [137], [102], [1]
Software / Technical quality
s-tech-1 Architecture quality P: [121], [75], [22], N: [25]
s-tech-2 Component quality P: [90], [84], N: [90]
s-tech-3 Contribution quality N: [47]
s-tech-4 Ease of integration P: [71]
s-tech-5 Maintainability P: [70], [20], [23], [132], [69], [57]
s-tech-6 Modularity P: [138], [150], [75], [135]
s-tech-7 Other non-functional require-

ments
P: [67], [75]

s-tech-8 Product quality P: [90], [138], [49], [118], [65]
s-tech-9 Source-code complexity P: [94], [71], [121], [58], [75], [137], [135]
s-tech-10 Source-code quality P: [116], [121], [118], [58], [103], [75], [146], [22], [134]

How to characterize the health of an Open Source Software project? A snowball literature review of an emerging practice OpenSym 2022, September 7–9, 2022, Madrid, Spain

with (s-dev-4). A relating characteristic concerns the presence and
quality of a contribution process, i.e., how contributions should be
made, reviewed, managed, and merged in the OSS project (s-dev-3).
Quality and maturity of processes and practices related to quality
assurance (s-dev-6), coordination (s-dev-3), coding conventions (s-
dev-1), and the development overall (s-dev-5) were also highlighted
by different studies. From (primarily) a commercial user perspec-
tive, the extent, and quality of any support services provided by the
OSS project or the actors engaged in or hosting the project, were
also lifted (s-dev-7).

Documentation: Documentation-related characteristics describe
the quality of general and technical documentation, addressing the
question how capable a community is to develop, persist, and dis-
seminate knowledge among current and future actors engaged in
the project. General documentation encompasses documentation
of general nature aimed at both the community, users, and others
interested in the OSS project, e.g., readme, homepage, and user
manuals (s-doc-5). Technical documentation refers to documenta-
tion covering different aspects of the development process, e.g., in
terms of onboarding, planning, contributions, code comments, and
quality assurance (s-doc-4). Certain characteristics focus explicitly
on quality aspects of the documentation in general, including the
completeness (s-doc-1), currentness (s-doc-3), as well as its level of
complexity, and ease of understanding (s-doc-2). One study high-
lighted the availability of multi-lingual documentation (s-doc-6).

General characteristics: A special group of characteristics looks
at how attractive an OSS project is based on its general technical fea-
tures. These characteristics include general user aspects such the
application domain, or product category, of the OSS (s-gen-2), the
type(s) of platforms and operating system(s) that the OSS is in-
tended for (s-gen-3), its age (s-gen-1), compliance with externally
defined standards (s-gen-6), and independence of external software
components (s-gen-5). Other characteristics are more technical,
such as the OSS project’s size and complexity (s-gen-4), and choice
of programming languages, libraries, frameworks, and protocols
(s-gen-7).

License: License-related characteristics were emphasized by sev-
eral studies, highlighting how license choices and related practices
may affect the popularity and attractiveness of an OSS project, both
for commercial actors and individuals. One study highlights whether
there is flexibility in terms of choosing between licenses for the
OSS project (s-lic-1). Most studies, however, emphasize the impor-
tance of the implications of the license on e.g., redistribution, usage,
and packaging (s-lic-2). On a more general level, the quality and
presence of practices and processes for license management in the
OSS project were emphasized as important for commercial actors
(s-lic-4), while the presence of legal jargon was highlighted as a
barrier to entry, especially for newcomers (s-lic-3).

Scaffolding: The scaffolding theme concerns how robust and
accessible the development and communication infrastructure used
in the OSS project is in terms of enabling a collaborative and high
quality maintenance of the project. This includes both the availability
(s-scaff-5), and accessibility and user-friendliness of tools used for
communication and development in the OSS project (s-scaff-4).
The presence and quality of continuous integration infrastructure,
automation, and practices in the OSS project were also highlighted
as important characteristics in terms of software quality and the

general attractiveness of a project (s-scaff-2). The ease of setting up
the build environment and compiling the OSS project is considered
an important aspect to enable newcomers and lower the barrier to
adoption of the OSS project (s-scaff-1).

Security: Characteristics in the security theme help answer the
question how robust an OSS project is in terms of mitigating and
managing vulnerabilities and security-related aspects in the current
and future maintenance of the project. More specifically, studies
have highlighted past, current, and future (predicted) presence of
vulnerabilities and characteristics thereof in dependencies of an
OSS project as an important characteristic (s-sec-6). So also the
address and persistence of past and current vulnerabilities in an
OSS project (s-sec-5). Practices relating to security (s-sec-3), and
specifically in terms of dependency management (s-sec-2), e.g., in
regards to managing ”conflicting versions of nested dependencies”
as well as updates and security patches, were also raised.

Technical quality: Technical quality is a rather wide theme
considering both the OSS project in general and its code base specif-
ically, helping to answer the question how robust an OSS project is
in terms of its technical quality, considering both a user and developer
perspective. Quality was highlighted both in terms of the product
(s-tech-8), component (s-tech-2), architecture (s-tech-1), and source
code level (s-tech 9). The complexity of the source code was specif-
ically highlighted in several studies, both in terms of attracting
and enabling developers to understand and contribute to the code
base, but also in terms of potential correlations to the presence of
bugs, vulnerabilities, and negative impact on quality requirements
in general. Although several quality requirements were highlighted
individually, modularity (s-tech-6), and maintainability (s-tech-5),
i.e., the ease of maintaining the source code of the OSS project),
were the two that received extra attention.

3.3 Orchestration-oriented characteristics
Orchestration: The orchestration-theme covers characteristics de-
scribing the governance structure and quality of the leadership,
helping to answer the question of how mature and open the orches-
tration is in the OSS project or its overarching ecosystem in terms of
enabling an open and inclusive collaboration and long-term mainte-
nance of the OSS project. Explicitness, formality, and general recog-
nition of the governance structure and leadership were especially
highlighted (o-orch-4). As was the way in which the individuals
in an OSS community are connected, collaborate, and grouped,
explored primarily through the concepts of community patterns
and community smells (o-orch-1). The same dimension concerns
the overarching ecosystem in how communities collaborate to cre-
ate resilience and synergies between each other (o-orch-2). Other
characteristics regard the leadership’s openness to input and trans-
parency of discussions with actors engaged or with an interest in
the OSS project (o-orch-6).

4 DISCUSSION AND CONCLUSIONS
Evaluating the health of an OSS project is a complex exercise. Know-
ing what to look for, and how to measure it may get out of hand
due to a wide focus, or risk becoming too narrow-minded so that
important aspects are missed. In this study, we set out to create an
overview of the wide range of sub-topics related to OSS health.

OpenSym 2022, September 7–9, 2022, Madrid, Spain Johan Linåker, Efi Papatheocharous, and Thomas Olsson

Table 3: Overview of orchestration-oriented health characteristics per theme. Characteristics listed under unique identifiers
linking to the respective codes in the online supplementary material [78], P = project level, and N = network-level focus.

Orchestration / Orchestration
o-orch-1 Community structure P: [16], [128], [29], [30], [58], [2], [96], [17], [61], [127]
o-orch-2 Ecosystem structure N: [138], [48], [49], [132], [92]
o-orch-3 Explicitness of ecosystem N: [7]
o-orch-4 Governance P: [149], [138], [71], [118], [75], [135], [12], [12], N: [7]
o-orch-5 Information consistency N: [48], [49]
o-orch-6 KPI-programme N: [7]
o-orch-7 Openness P: [118], [58]
o-orch-8 Processes P: [143], [20], [23], [75]
o-orch-9 Trustworthiness N: [48], [49]

Based on a snowball study over two iterations, including 146
primary studies, we derive a framework that consists of 107 health
characteristics divided among 15 themes. The themes are dispersed
over the socio-technical spectrum with the least coverage in terms
of orchestration-related characteristics. It may further be noted that
a limited portion of the characteristics is observed on the network
level. This relates to the context of the studies included, whether
they have focused on an ecosystem (i.e., network) perspective, or
the OSS project more specifically. The identified studies confirm,
however, the importance of not analyzing an OSS project in isola-
tion. Its dependencies and ties to other projects play an important
part, e.g., in terms of resilience and security.

Giving a detailed presentation of the whole framework, including
all its characteristics and metrics is beyond the scope and format
of this paper, which is why we refer readers to the supplementary
material to investigate and explore the assessment framework in-
depth [78].

Similar to the CHAOSS project, our framework provides limited
guidance in terms of which characteristics to consider, and how.
Specifically, we provide limited support in regards to what metrics
to operationalize for each characteristic. Readers have to consider
metrics as presented through the audit trail and code structure
provided in the supplementary material [78]. In future research,
we aim to address this gap through further iterations to design
a more mature framework with related processes that can be tai-
lored based on organizational context and requirements. We aim to
leverage case studies, interview surveys and observations of health
assessments.

Regarding the limitations in general, it should be noted that we
do not claim to have systematically surveyed the literature. Rather,
we have made design choices that have limited the search scope and
potentially excluded papers (and characteristics) that might be of
relevance. We do believe, however, that the snowballing approach
has provided a broad sample of the literature, where we could
observe a saturation in elicited characteristics.

REFERENCES
[1] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2021. Empirical analysis

of security vulnerabilities in python packages. In 2021 IEEE Int. conf. on Software
Analysis, Evolution and Reengineering (Honolulu, HI, US). IEEE, 446–457.

[2] Nuri Almarimi, Ali Ouni, Moataz Chouchen, and Mohamed Wiem Mkaouer.
2021. csDetector: an open source tool for community smells detection. In
Proc. of the 29th ACM Joint Meeting on European Software Engineering conf. and
Symposium on the Foundations of Software Engineering (Athens Greece). ACM,

New York, NY, USA, 1560–1564.
[3] Carina Alves, Joyce Oliveira, and Slinger Jansen. 2018. Understanding Gover-

nance Mechanisms and Health in Software Ecosystems: A Systematic Literature
Review. In Enterprise Information Systems, Slimane Hammoudi, Michał Śmi-
ałek, Olivier Camp, and Joaquim Filipe (Eds.). Springer Int. Publishing, Cham,
517–542.

[4] Hirohisa Aman, Aji Ery Burhandenny, Sousuke Amasaki, Tomoyuki Yokogawa,
and Minoru Kawahara. 2017. A Health Index of Open Source Projects Focusing
on Pareto Distribution of Developer’s Contribution. In 2017 8th Int. Workshop
on Empirical Software Engineering in Practice (Tokyo, Japan). IEEE, 29–34.

[5] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander
Serebrenik. 2019. On the abandonment and survival of open source projects: An
empirical investigation. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (Porto de Galinhas, Brazil). IEEE, 1–12.

[6] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente.
2016. A novel approach for estimating truck factors. In 2016 IEEE 24th Int. conf.
on Program Comprehension (Austin, TX, USA). IEEE, 1–10.

[7] Alfred Baars and Slinger Jansen. 2012. A Framework for Software Ecosys-
tem Governance. In Software Business, Michael A. Cusumano, Bala Iyer, and
N. Venkatraman (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 168–180.

[8] Sogol Balali, Umayal Annamalai, Hema Susmita Padala, Bianca Trinkenreich,
Marco A Gerosa, Igor Steinmacher, and Anita Sarma. 2020. Recommending
tasks to newcomers in oss projects: How do mentors handle it?. In Proc. of the
16th Int. Symposium on Open Collaboration (Spain). ACM, New York, NY, USA,
1–14.

[9] Lingfeng Bao, Xin Xia, David Lo, and Gail C Murphy. 2019. A large scale study
of long-time contributor prediction for github projects. IEEE Transactions on
Software Engineering 47, 6 (2019), 1277–1298.

[10] Shahab Bayati. 2019. Effect of Newcomers’ Supportive Strategies onOpen Source
Projects Socio-Technical Activities. In 2019 IEEE/ACM 12th Int. Workshop on
Cooperative and Human Aspects of Software Engineering (Montréal, QC, Canada).
IEEE, 49–50.

[11] Hudson Borges and Marco Tulio Valente. 2018. What’s in a github star? under-
standing repository starring practices in a social coding platform. Journal of
Systems and Software 146 (2018), 112–129.

[12] Simon Butler, Jonas Gamalielsson, Björn Lundell, Christoffer Brax, Anders
Mattsson, Tomas Gustavsson, Jonas Feist, Bengt Kvarnström, and Erik Lönroth.
2022. Considerations and challenges for the adoption of open source components
in software-intensive businesses. Journal of Systems and Software 186 (2022),
111152.

[13] Simon Butler, Jonas Gamalielsson, Björn Lundell, Christoffer Brax, Johan Sjöberg,
Anders Mattsson, Tomas Gustavsson, Jonas Feist, and Erik Lönroth. 2019. On
company contributions to community open source software projects. IEEE
Transactions on Software Engineering 47, 7 (2019), 1381–1401.

[14] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano
Panichella. 2012. Who is going to mentor newcomers in open source projects?.
In Proc. of the ACM SIGSOFT 20th Int. Symposium on the Foundations of Software
Engineering (Cary, NC, US). ACM, New York, NY, USA, 1–11.

[15] Javier Luis Cánovas Izquierdo and Jordi Cabot. 2022. On the analysis of non-
coding roles in open source development. Empirical Software Engineering 27, 1
(2022), 1–32.

[16] Andrea Capiluppi, Klaas-Jan Stol, and Cornelia Boldyreff. 2012. Exploring the
role of commercial stakeholders in open source software evolution. In IFIP Int.
conf. on Open Source Systems (Hammamet, Tunisia). Springer, 178–200.

[17] Gemma Catolino, Fabio Palomba, Damian A Tamburri, and Alexander Sere-
brenik. 2021. Understanding community smells variability: A statistical ap-
proach. In 2021 IEEE/ACM 43rd Int. conf. on Software Engineering: Software

How to characterize the health of an Open Source Software project? A snowball literature review of an emerging practice OpenSym 2022, September 7–9, 2022, Madrid, Spain

Engineering in Society (Madrid, Spain). IEEE, 77–86.
[18] Gemma Catolino, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik,

and Filomena Ferrucci. 2019. Gender diversity and women in software teams:
How do they affect community smells?. In 2019 IEEE/ACM 41st Int. conf. on
Software Engineering: Software Engineering in Society (Montreal, Canada). IEEE,
11–20.

[19] Kaylea Champion and Benjamin Mako Hill. 2021. Underproduction: An ap-
proach for measuring risk in open source software. In 2021 IEEE Int. conf. on
Software Analysis, Evolution and Reengineering. IEEE, Virtual, 388–399.

[20] Jailton Coelho andMarco Tulio Valente. 2017. Whymodern open source projects
fail. In Proc. of the 2017 11th Joint meeting on Foundations of Software Engineering
(Paderborn, Germany). ACM, New York, NY, USA, 186–196.

[21] Jailton Coelho, Marco Tulio Valente, LucianoMilen, and Luciana L. Silva. 2020. Is
this GitHub project maintained? Measuring the level of maintenance activity of
open-source projects. Information and Software Technology 122 (2020), 106274.

[22] Jailton Coelho, Marco Tulio Valente, Luciana L Silva, and André Hora. 2018.
Why we engage in FLOSS: Answers from core developers. In Proceedings of the
11th Int. workshop on Cooperative and Human Aspects of Software Engineering
(Gothenburg Sweden). ACM, New York, NY, USA, 114–121.

[23] Kattiana Constantino, Mauricio Souza, Shurui Zhou, Eduardo Figueiredo, and
Christian Kästner. 2021. Perceptions of open-source software developers on
collaborations: An interview and survey study. Journal of Software: Evolution
and Process (2021), e2393.

[24] Eleni Constantinou and TomMens. 2017. An empirical comparison of developer
retention in the RubyGems and npm software ecosystems. Innovations in Systems
and Software Engineering 13, 2 (2017), 101–115.

[25] Simone da Silva Amorim, John D McGregor, Eduardo Santana de Almeida,
and Christina von Flach G. Chavez. 2018. Educating to achieve healthy open
source ecosystems. In Proc. of the 12th European conf. on Software Architecture:
Companion Proc. (Madrid Spain). ACM, New York, NY, USA, 1–7.

[26] Simone da Silva Amorim, Félix Simas S Neto, John DMcGregor, Eduardo Santana
de Almeida, and Christina von Flach G. Chavez. 2017. How has the health of
software ecosystems been evaluated? A systematic review. In Proc. of the 31st
Brazilian symposium on software engineering (Fortaleza, CE, Brazil). ACM, New
York, NY, USA, 14–23.

[27] Sherae Daniel and Katherine Stewart. 2016. Open source project success: Re-
source access, flow, and integration. The Journal of Strategic Information Systems
25, 3 (2016), 159–176.

[28] Stanislav Dashevskyi, Achim D Brucker, and Fabio Massacci. 2018. A screening
test for disclosed vulnerabilities in foss components. IEEE Transactions on
Software Engineering 45, 10 (2018), 945–966.

[29] Manuel De Stefano, Emanuele Iannone, Fabiano Pecorelli, and Damian Andrew
Tamburri. 2022. Impacts of software community patterns on process and product:
An empirical study. Science of Computer Programming 214 (2022), 102731.

[30] Manuel De Stefano, Fabiano Pecorelli, Damian A Tamburri, Fabio Palomba, and
Andrea De Lucia. 2020. Splicing community patterns and smells: A preliminary
study. In Proc. of the IEEE/ACM 42nd Int. conf. on Software Engineering Workshops
(Seoul, Republic of Korea). ACM, New York, NY, USA, 703–710.

[31] Alexandre Decan, Eleni Constantinou, Tom Mens, and Henrique Rocha. 2020.
GAP: Forecasting commit activity in git projects. Journal of Systems and Software
165 (2020), 110573.

[32] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the evolution
of technical lag in the npm package dependency network. In 2018 IEEE Int. conf.
on Software Maintenance and Evolution (Madrid, Spain). IEEE, 404–414.

[33] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Proc. of
the 15th Int. conf. on Mining Software Repositories (Gothenburg, Sweden). ACM,
New York, NY, USA, 181–191.

[34] Alexandre Decan, TomMens, and Philippe Grosjean. 2019. An empirical compar-
ison of dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering 24, 1 (2019), 381–416.

[35] Denis Dennehy, Kieran Conboy, Jennifer Ferreira, and Jaganath Babu. 2020. Sus-
taining open source communities by understanding the influence of discursive
manifestations on sentiment. Information Systems Frontiers (2020), 1–17.

[36] Remo Eckert and Andreas Mueller. 2017. Sustainability and Diversity of Open
Source Software Communities. In The 12th International conf. on Software Engi-
neering Advances (Athens, Greece). IARIA, 59.

[37] Evert Eckhardt, Erwin Kaats, Slinger Jansen, and Carina Alves. 2014. The Merits
of a Meritocracy in Open Source Software Ecosystems. In Proc. of the 2014
European conf. on Software Architecture Workshops (Vienna, Austria). ACM, New
York, NY, USA, Article 7, 6 pages.

[38] Vijaya Kumar Eluri, Thomas AMazzuchi, and Shahram Sarkani. 2021. Predicting
long-time contributors for GitHub projects using machine learning. Information
and Software Technology 138 (2021), 106616.

[39] Vijaya Kumar Eluri, Shahram Sarkani, and Thomas A Mazzuchi. 2019. Open
Source Software Survivability Prediction Using Multi Layer Perceptron. In Proc.
of 28th Int. conf. on Software Engineering and Data Engineering, Vol. 64. EPiC
Series in Computing, San Diego, CA, USA, 148–157.

[40] Fabian Fagerholm, Alejandro S Guinea, Jürgen Münch, and Jay Borenstein. 2014.
The role of mentoring and project characteristics for onboarding in open source
software projects. In Proc. of the 8th ACM/IEEE Int. Symposium on Empirical
Software Engineering and Measurement (Torino, Italy). ACM, New York, NY,
USA, 1–10.

[41] Hongbo Fang, Hemank Lamba, James Herbsleb, and Bogdan Vasilescu. 2022.
“This Is Damn Slick!” Estimating the Impact of Tweets on Open Source Project
Popularity and New Contributors. In In 44th Int. conf. on Software Engineering
(Pittsburgh, PA, USA). ACM, New York, NY, USA, 14 pages.

[42] Fabio Ferreira, Luciana Lourdes Silva, and Marco Tulio Valente. 2020. Turnover
in Open-Source Projects: The Case of Core Developers. In Proc. of the 34th
Brazilian Symposium on Software Engineering (Natal, Brazil). ACM, New York,
NY, USA, 447–456.

[43] Isabella Ferreira, Jinghui Cheng, and Bram Adams. 2021. The "Shut the f**
k up" Phenomenon: Characterizing Incivility in Open Source Code Review
Discussions. Proc. of the ACM on Human-Computer Interaction 5, CSCW2 (2021),
1–35.

[44] Mívian Ferreira, Marco Tulio Valente, and Kecia Ferreira. 2017. A comparison of
three algorithms for computing truck factors. In 2017 IEEE/ACM 25th Int. conf.
on Program Comprehension (Buenos Aires, Argentina). IEEE, 207–217.

[45] Anna Filippova and Hichang Cho. 2016. The effects and antecedents of conflict
in free and open source software development. In Proc. of the 19th ACM conf. on
Computer-Supported Cooperative Work & Social Computing (San Francisco, CA,
USA). ACM, New York, NY, USA, 705–716.

[46] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C Murphy, and Jean-Rémy
Falleri. 2015. Impact of developer turnover on quality in open-source software.
In Proc. of the 2015 10th Joint Meeting on Foundations of Software Engineering
(Bergamo, Italy). ACM, New York, NY, USA, 829–841.

[47] Armstrong Foundjem, Ellis E Eghan, and Bram Adams. 2021. Onboarding vs. Di-
versity, Productivity, and Quality-Empirical Study of the OpenStack Ecosystem.
In 43rd Int. conf. on Software Engineering (Madrid, Spain). IEEE, 1033–1045.

[48] Oscar Franco-Bedoya, David Ameller, Dolors Costal, and Xavier Franch. 2014.
Measuring the quality of open source software ecosystems using queso. In Int.
conf. on Software Technologies (Druskininkai, Lithuania). Springer, Cham, 39–62.

[49] Oscar Franco-Bedoya, David Ameller, Dolors Costal, and Xavier Franch. 2014.
Queso a quality model for open source software ecosystems. In 2014 9th Int.
conf. on Software Engineering and Applications (Vienna, Austria). IEEE, 209–221.

[50] Oscar Franco-Bedoya, David Ameller, Dolors Costal, and Xavier Franch. 2017.
Open source software ecosystems: A Systematic mapping. Information and
Software Technology 91 (2017), 160 – 185.

[51] Felipe Fronchetti, Igor Wiese, Gustavo Pinto, and Igor Steinmacher. 2019. What
attracts newcomers to onboard on oss projects? tl; dr: Popularity. In IFIP Int.
conf. on Open Source Systems (Montreal, QC, Canada). Springer, Cham, 91–103.

[52] Jonas Gamalielsson and Björn Lundell. 2014. Sustainability of Open Source
software communities beyond a fork: How and why has the LibreOffice project
evolved? Journal of Systems and Software 89 (2014), 128–145.

[53] David Garcia, Marcelo Serrano Zanetti, and Frank Schweitzer. 2013. The Role of
Emotions in Contributors Activity: A Case Study on the GENTOO Community.
In 2013 Int. conf. on Cloud and Green Computing (Karlsruhe, Germany). IEEE,
410–417.

[54] Amir Hossein Ghapanchi. 2015. Predicting software future sustainability: A
longitudinal perspective. Information Systems 49 (2015), 40–51.

[55] Sean Goggins, Kevin Lumbard, and Matt Germonprez. 2021. Open Source
Community Health: Analytical Metrics and Their Corresponding Narratives. In
2021 IEEE/ACM 4th Int. Workshop on Software Health in Projects, Ecosystems and
Communities (Madrid, Spain). ACM, New York, NY, USA, 25–33.

[56] Jesus M. Gonzalez-Barahona. 2020. Characterizing Outdateness with Technical
Lag: An Exploratory Study. ACM, New York, NY, USA, 735–741.

[57] Francielly Grigorio, Daniel Brito, Eudisley Anjos, and Mario Zenha-Rela. 2014.
On systems project abandonment: An analysis of complexity during develop-
ment and evolution of FLOSS systems. In 2014 IEEE 6th Int. conf. on Adaptive
Science & Technology (Ota, Nigeria). IEEE, 1–8.

[58] Mariam Guizani, Amreeta Chatterjee, Bianca Trinkenreich, Mary Evelyn May,
Geraldine J. Noa-Guevara, Liam James Russell, Griselda G. Cuevas Zambrano,
Daniel Izquierdo-Cortazar, Igor Steinmacher, Marco A. Gerosa, and Anita Sarma.
2021. The Long Road Ahead: Ongoing Challenges in Contributing to Large OSS
Organizations and What to Do. Proc. ACM Hum.-Comput. Interact. 5, CSCW2,
Article 407 (oct 2021), 30 pages. https://doi.org/10.1145/3479551

[59] Mariam Guizani, Thomas Zimmermann, Anita Sarma, and Denae Ford. 2022.
Attracting and Retaining OSS Contributors with a Maintainer Dashboard. In
In 44th Int. conf. on Software Engineering: Software Engineering in Society (Pitts-
burgh, PA, USA). ACM, New York, NY, USA, 5 pages.

[60] Hideaki Hata, Taiki Todo, Saya Onoue, and Kenichi Matsumoto. 2015. Charac-
teristics of sustainable oss projects: A theoretical and empirical study. In 2015
IEEE/ACM 8th Int. Workshop on Cooperative and Human Aspects of Software
Engineering (Florence, Italy). IEEE, 15–21.

https://doi.org/10.1145/3479551

OpenSym 2022, September 7–9, 2022, Madrid, Spain Johan Linåker, Efi Papatheocharous, and Thomas Olsson

[61] Zijie Huang, Zhiqing Shao, Guisheng Fan, Jianhua Gao, Ziyi Zhou, Kang Yang,
and Xingguang Yang. 2021. Predicting community smells’ occurrence on indi-
vidual developers by sentiments. In 29th Int. conf. on Program Comprehension
(Madrid, Spain). IEEE, 230–241.

[62] Javier Luis Cánovas Izquierdo and Jordi Cabot. 2018. The role of foundations
in open source projects. In Proc. of the 40th Int. conf. on Software Engineering:
Software Engineering in Society (Gothenburg, Sweden). ACM, New York, NY,
USA, 3–12.

[63] Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, and
Nikolaos Tsantalis. 2021. Dependency smells in Javascript projects. IEEE
Transactions on Software Engineering 50, 8 (2021), 18 pages.

[64] Slinger Jansen. 2014. Measuring the health of open source software ecosystems:
Beyond the scope of project health. Information and Software Technology 56, 11
(2014), 1508 – 1519. Special issue on Software Ecosystems.

[65] Oskar Jarczyk, Błażej Gruszka, Szymon Jaroszewicz, Leszek Bukowski, and
Adam Wierzbicki. 2014. Github projects. quality analysis of open-source soft-
ware. In Int. conf. on Social Informatics (Barcelona, Spain). Springer, Cham,
80–94.

[66] Oskar Jarczyk, Szymon Jaroszewicz, Adam Wierzbicki, Kamil Pawlak, and
Michal Jankowski-Lorek. 2018. Surgical teams on GitHub: Modeling perfor-
mance of GitHub project development processes. Information and Software
Technology 100 (2018), 32–46.

[67] Sha Jiang, Jian Cao, and Mukesh Prasad. 2019. The Metrics to Evaluate the
Health Status of OSS Projects Based on Factor Analysis. InCCF conf. on Computer
Supported Cooperative Work and Social Computing. Springer, Cham, 723–737.

[68] Abin Joy, Senthilkumar Thangavelu, and Amalendu Jyotishi. 2018. Performance
of GitHub open-source software project: an empirical analysis. In 2018 Second
Int. conf. on Advances in Electronics, Computers and Communications (Bangalore,
India). IEEE, 1–6.

[69] Gerta Kapllani, Ilya Khomyakov, Ruzilya Mirgalimova, and Alberto Sillitti. 2020.
An Empirical Analysis of the Maintainability Evolution of Open Source Systems.
In IFIP Int. conf. on Open Source Systems (Innopolis, Russia). Springer, Cham,
78–86.

[70] Jymit Khondhu, Andrea Capiluppi, and Klaas-Jan Stol. 2013. Is it all lost? A
study of inactive open source projects. In IFIP Int. conf. on open source systems
(Koper-Capodistria, Slovenia). Springer, Cham, 61–79.

[71] Apostolos Kritikos and Ioannis Stamelos. 2018. Open Source Software Resilience
Framework. In IFIP Int. conf. on Open Source Systems (Athens, Greece). Springer,
Cham, 39–49.

[72] Stefano Lambiase, Gemma Catolino, Damian A Tamburri, Alexander Serebrenik,
Fabio Palomba, and Filomena Ferrucci. 2022. Good Fences Make Good Neigh-
bours? On the Impact of Cultural and Geographical Dispersion on Community
Smells. In In 44th Int. conf. on Software Engineering: Software Engineering in
Society (Pittsburgh, PA, USA). ACM, New York, NY, USA, 12 pages.

[73] Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu. 2017. Understanding the
impressions, motivations, and barriers of one time code contributors to FLOSS
projects: a survey. In 2017 IEEE/ACM 39th Int. conf. on Software Engineering
(Buenos Aires, Argentina). IEEE, 187–197.

[74] Xiaozhou Li, Sergio Moreschini, Fabiano Pecorelli, and Davide Taibi. 2022. OS-
SARA: Abandonment Risk Assessment for Embedded Open Source Components.
IEEE Software 39, 04 (2022), 48–53.

[75] Xiaozhou Li, Sergio Moreschini, Zheying Zhang, and Davide Taibi. 2022. Ex-
ploring factors and metrics to select open source software components for
integration: An empirical study. Journal of Systems and Software 188 (2022),
111255.

[76] Zhifang Liao, Benhong Zhao, Shengzong Liu, Haozhi Jin, Dayu He, Liu Yang,
Yan Zhang, and Jinsong Wu. 2019. A prediction model of the project life-span in
open source software ecosystem. Mobile Networks and Applications 24, 4 (2019),
1382–1391.

[77] Bin Lin, Gregorio Robles, and Alexander Serebrenik. 2017. Developer turnover
in global, industrial open source projects: Insights from applying survival anal-
ysis. In 2017 IEEE 12th Int. conf. on Global Software Engineering (Buenos Aires,
Argentina). IEEE, 66–75.

[78] Johan Linåker, Efi Papatheocharous, and Thomas Olsson. 2022. Online Suppl.
Material. https://doi.org/10.6084/m9.figshare.20137175

[79] Georg JP Link and Debora Jeske. 2017. Understanding organization and open
source community relations through the attraction-selection-attrition model.
In Proc. of the 13th Int. Symposium on Open Collaboration (Galway, Ireland).
Association for Computing Machinery, New York, NY, USA, 1–8.

[80] Chao Liu, Dan Yang, Xiaohong Zhang, Haibo Hu, Jed Barson, and Baishakhi
Ray. 2018. A recommender system for developer onboarding. In Proc. of the
40th Int. conf. on Software Engineering: Companion Prc. (Gothenburg, Sweden).
Association for Computing Machinery, New York, NY, USA, 319–320.

[81] Héctor J Macho and Gregorio Robles. 2013. Preliminary lessons from a software
evolution analysis of Moodle. In Proc. of the First Int. conf. on Technological
Ecosystem for Enhancing Multiculturality (Salamanca, Spain). Association for
Computing Machinery, New York, NY, USA, 157–161.

[82] Konstantinos Manikas and Klaus Marius Hansen. 2013. Reviewing the health of
software ecosystems–a conceptual framework proposal. In Proc. of the 5th Int.
Workshop on Software Ecosystems. Citeseer, 33–44.

[83] Konstantinos Manikas and Klaus Marius Hansen. 2013. Software ecosystems–
a systematic literature review. Journal of Systems and Software 86, 5 (2013),
1294–1306.

[84] Konstantinos Manikas and Dimosthenis Kontogiorgos. 2015. Characterizing
software activity: The influence of software to ecosystem health. In Proc. of
the 2015 European conf. on Software Architecture Workshops (Dubrovnik, Cavtat,
Croatia). ACM, New York, NY, USA, 1–6.

[85] Junaid Maqsood, Iman Eshraghi, and Syed Sarmad Ali. 2017. Success or failure
identification for GitHub’s open source projects. In Proc. of the 2017 Int. conf.
on Management Engineering, Software Engineering and Service Sciences (Wuhan,
China). ACM, New York, NY, USA, 145–150.

[86] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. 2013. Impression formation
in online peer production: activity traces and personal profiles in github. In
Proc. of the 2013 conf. on Computer supported cooperative work (San Antonio, TX,
USA). Association for Computing Machinery, New York, NY, USA, 117–128.

[87] Vishal Midha and Prashant Palvia. 2012. Factors affecting the success of Open
Source Software. Journal of Systems and Software 85, 4 (2012), 895–905.

[88] Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan Vasilescu, and Christian
Kästner. 2022. “Did YouMiss My Comment orWhat?” Understanding Toxicity in
Open Source Discussions. In In 44th Int. conf. on Software Engineering (Pittsburgh,
PA, USA). ACM, New York, NY, USA, 710–722.

[89] Courtney Miller, David Gray Widder, Christian Kästner, and Bogdan Vasilescu.
2019. Why Do People Give Up FLOSSing? A Study of Contributor Disengage-
ment in Open Source. In Open Source Systems, Francis Bordeleau, Alberto Sillitti,
Paulo Meirelles, and Valentina Lenarduzzi (Eds.). Springer Int. Publishing, Cham,
116–129.

[90] John Yates Monteith, John D McGregor, and John E Ingram. 2014. Proposed
metrics on ecosystem health. In Proc. of the 2014 ACM Int. workshop on Software-
defined ecosystems (Vancouver, BC, Canada). Association for Computing Ma-
chinery, New York, NY, USA, 33–36.

[91] Saya Onoue, Hideaki Hata, and Kenichi Matsumoto. 2014. Software population
pyramids: The current and the future of oss development communities. In Proc.
of the 8th ACM/IEEE Int. Symposium on Empirical Software Engineering and
Measurement (Torino, Italy). ACM, New York, NY, USA, 1–4.

[92] Samuel Onyango, Emilie Steenvoorden, Joram Scholten, Slinger Jansen, Peggy
Gregory, Philippe Kruchten, et al. 2021. Assessing the Health of the Dark Web:
An Analysis of Dark Web Open Source Software Projects. In Agile Processes in
Software Engineering and Extreme Programming–Workshops, Vol. 426. Springer,
125–134.

[93] Marc Oriol, Oscar Franco-Bedoya, Xavier Franch, and Jordi Marco. 2014. As-
sessing open source communities’ health using Service Oriented Computing
concepts. In 2014 IEEE Eighth Int. conf. on Research Challenges in Information
Science (Marrakech, Morocco). IEEE, 1–6.

[94] Khadija Osman and Olga Baysal. 2021. Health is Wealth: Evaluating the Health
of the Bitcoin Ecosystem in GitHub. In 2021 IEEE/ACM 4th Int. Workshop on
Software Health in Projects, Ecosystems and Communities (Madrid, Spain). IEEE,
1–8.

[95] Cassandra Overney, Jens Meinicke, Christian Kästner, and Bogdan Vasilescu.
2020. How to Not Get Rich: An Empirical Study of Donations in Open Source.
In Proc. of the ACM/IEEE 42nd Int. conf. on Software Engineering (Seoul, South
Korea). ACM, New York, NY, USA, 1209–1221.

[96] Fabio Palomba andDamianAndrewTamburri. 2021. Predicting the emergence of
community smells using socio-technical metrics: A machine-learning approach.
Journal of Systems and Software 171 (2021), 110847.

[97] Javier Pérez, Romuald Deshayes, Mathieu Goeminne, and Tom Mens. 2012.
Seconda: Software ecosystem analysis dashboard. In 2012 16th European conf.
on Software Maintenance and Reengineering (Szeged, Hungary). IEEE, 527–530.

[98] Etiel Petrinja and Giancarlo Succi. 2012. Two evolution indicators for FOSS
projects. In IFIP Int. conf. on Open Source Systems (Hammamet, Tunisia). Springer,
Cham, 216–232.

[99] Rolf-Helge Pfeiffer. 2021. Identifying critical projects via pagerank and truck
factor. In 2021 IEEE/ACM 18th Int. conf. on Mining Software Repositories (Madrid,
Spain). IEEE, 41–45.

[100] Konstantinos Plakidas, Daniel Schall, and Uwe Zdun. 2017. Evolution of the
R software ecosystem: Metrics, relationships, and their impact on qualities.
Journal of Systems and Software 132 (2017), 119–146.

[101] Konstantinos Plakidas, Srdjan Stevanetic, Daniel Schall, Tudor B Ionescu, and
Uwe Zdun. 2016. How do software ecosystems evolve? A quantitative assess-
ment of the R ecosystem. In Proc. of the 20th Int. Systems and Software Product
Line conf. (Beijing, China). Association for Computing Machinery, New York,
NY, USA, 89–98.

[102] Gede Artha Azriadi Prana, Abhishek Sharma, Lwin Khin Shar, Darius Foo,
Andrew E Santosa, Asankhaya Sharma, and David Lo. 2021. Out of sight, out
of mind? How vulnerable dependencies affect open-source projects. Empirical
Software Engineering 26, 4 (2021), 1–34.

https://doi.org/10.6084/m9.figshare.20137175

How to characterize the health of an Open Source Software project? A snowball literature review of an emerging practice OpenSym 2022, September 7–9, 2022, Madrid, Spain

[103] Huilian Sophie Qiu, Yucen Lily Li, Susmita Padala, Anita Sarma, and Bogdan
Vasilescu. 2019. The Signals That Potential Contributors Look for When Choos-
ing Open-Source Projects. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article
122 (nov 2019), 29 pages.

[104] Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander Serebrenik, and
Bogdan Vasilescu. 2019. Going Farther Together: The Impact of Social Capital
on Sustained Participation in Open Source. In 2019 IEEE/ACM 41st Int. conf. on
Software Engineering (Montreal, QC, Canada). IEEE, 688–699.

[105] Uzma Raja and Marietta J Tretter. 2012. Defining and evaluating a measure of
open source project survivability. IEEE Transactions on Software Engineering 38,
1 (2012), 163–174.

[106] Naveen Raman, Minxuan Cao, Yulia Tsvetkov, Christian Kästner, and Bogdan
Vasilescu. 2020. Stress and Burnout in Open Source: Toward Finding, Under-
standing, and Mitigating Unhealthy Interactions. In Proc. of the ACM/IEEE 42nd
Int. conf. on Software Engineering: New Ideas and Emerging Results (Seoul, South
Korea). ACM, New York, NY, USA, 57–60.

[107] Mehvish Rashid, Paul M Clarke, and Rory V O’Connor. 2019. A systematic
examination of knowledge loss in open source software projects. Int. Journal of
Information Management 46 (2019), 104–123.

[108] Ayushi Rastogi and Ashish Sureka. 2014. What community contribution pattern
says about stability of software project?. In 2014 21st Asia-Pacific Software
Engineering conf. (Jeju, Korea (South)), Vol. 2. IEEE, 31–34.

[109] Leiming Ren, Shimin Shan, Xiujuan Xu, and Yu Liu. 2020. StarIn: An Approach to
Predict the Popularity of GitHub Repository. In Int. conf. of Pioneering Computer
Scientists, Engineers and Educators. Springer, Singapore, 258–273.

[110] Dirk Riehle, Philipp Riemer, Carsten Kolassa, and Michael Schmidt. 2014. Paid
vs. volunteer work in open source. In 2014 47th Hawaii Int. conf. on System
Sciences (Honolulu, HI, USA). IEEE, 3286–3295.

[111] Peter C. Rigby, Yue Cai Zhu, Samuel M. Donadelli, and Audris Mockus. 2016.
Quantifying and Mitigating Turnover-Induced Knowledge Loss: Case Studies
of Chrome and a Project at Avaya. In 2016 IEEE/ACM 38th Int. conf. on Software
Engineering (Austin, TX, USA). IEEE, 1006–1016.

[112] Gregorio Robles and Jesús M González-Barahona. 2012. A comprehensive study
of software forks: Dates, reasons and outcomes. In IFIP Int. conf. on Open Source
Systems (Hammamet, Tunisia). Springer, Cham, 1–14.

[113] Carlos Santos, George Kuk, Fabio Kon, and John Pearson. 2013. The attraction of
contributors in free and open source software projects. The Journal of Strategic
Information Systems 22, 1 (2013), 26–45.

[114] Carlos Denner dos Santos. 2017. Changes in free and open source software
licenses: managerial interventions and variations on project attractiveness.
Journal of Internet Services and Applications 8, 1 (2017), 1–12.

[115] Andreas Schilling, Sven Laumer, and Tim Weitzel. 2012. Who will remain?
an evaluation of actual person-job and person-team fit to predict developer
retention in floss projects. In 2012 45th Hawaii Int. conf. on System Sciences
(Honolulu, HI, USA). IEEE, 3446–3455.

[116] Thomas Schranz, Christian Schindler, Matthias Müller, and Wolfgang Slany.
2019. Contributors’ impact on a FOSS project’s quality. In Proc. of the 2nd ACM
SIGSOFT Int. Workshop on Software Qualities and Their Dependencies (Tallinn,
Estonia). ACM, New York, NY, USA, 35–38.

[117] Ravi Sen, Siddhartha S Singh, and Sharad Borle. 2012. Open source software
success: Measures and analysis. Decision Support Systems 52, 2 (2012), 364–372.

[118] Maha Shaikh and Natalia Levina. 2019. Selecting an open innovation commu-
nity as an alliance partner: Looking for healthy communities and ecosystems.
Research Policy 48, 8 (2019), 103766.

[119] Mario Silic and Andrea Back. 2017. Open source software adoption: Lessons
from Linux in Munich. IT Professional 19, 1 (2017), 42–47.

[120] Diomidis Spinellis. 2019. How to select open source components. Computer 52,
12 (2019), 103–106.

[121] Igor Steinmacher, Marco Gerosa, Tayana U Conte, and David F Redmiles. 2019.
Overcoming social barriers when contributing to open source software projects.
Computer Supported Cooperative Work (CSCW) 28, 1 (2019), 247–290.

[122] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
David F Redmiles. 2015. A systematic literature review on the barriers faced
by newcomers to open source software projects. Information and Software
Technology 59 (2015), 67–85.

[123] Igor Steinmacher, Christoph Treude, and Marco Aurelio Gerosa. 2018. Let me in:
Guidelines for the successful onboarding of newcomers to open source projects.
IEEE Software 36, 4 (2018), 41–49.

[124] Igor Steinmacher, Igor Wiese, Ana Paula Chaves, and Marco Aurélio Gerosa.
2013. Why do newcomers abandon open source software projects?. In 2013
6th Int. Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE) (San Francisco, CA, USA). IEEE, 25–32.

[125] Igor Steinmacher, Igor Scaliante Wiese, and Marco Aurélio Gerosa. 2012. Recom-
mending mentors to software project newcomers. In 2012 Third Int. Workshop
on Recommendation Systems for Software Engineering (RSSE). IEEE, 63–67.

[126] MM Mahbubul Syeed, Imed Hammouda, and Tarja Systä. 2013. Evolution of
open source software projects: A systematic literature review. J. Softw. 8, 11
(2013), 2815–2829.

[127] Damian A Tamburri, Fabio Palomba, and Rick Kazman. 2019. Exploring com-
munity smells in open-source: An automated approach. IEEE Transactions on
software Engineering 47, 3 (2019), 630–652.

[128] Damian A Tamburri, Fabio Palomba, Alexander Serebrenik, and Andy Zaidman.
2019. Discovering community patterns in open-source: a systematic approach
and its evaluation. Empirical Software Engineering 24, 3 (2019), 1369–1417.

[129] Parastou Tourani, Yujuan Jiang, and Bram Adams. 2014. Monitoring sentiment
in open source mailing lists: exploratory study on the apache ecosystem. In
24th Annual International conf. on Computer Science and Software Engineering
(Markham, ON, Canada), Vol. 14. IBM, 34–44.

[130] Bianca Trinkenreich, Mariam Guizani, Igor Wiese, Anita Sarma, and Igor Stein-
macher. 2020. Hidden figures: Roles and pathways of successful oss contributors.
Proc. of the ACM on human-computer interaction 4, CSCW2 (2020), 1–22.

[131] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018.
Adding Sparkle to Social Coding: An Empirical Study of Repository Badges
in the Npm Ecosystem. In Proc. of the 40th Int. conf. on Software Engineering
(Gothenburg, Sweden). ACM, New York, NY, USA, 511–522.

[132] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-Level
Determinants of Sustained Activity in Open-Source Projects: A Case Study of the
PyPI Ecosystem. In Proc. of the 2018 26th ACM Joint Meeting on European Software
Engineering conf. and Symposium on the Foundations of Software Engineering
(Lake Buena Vista, FL, USA). ACM, New York, NY, USA, 644–655.

[133] Sonny Van Lingen, Adrien Palomba, and Garm Lucassen. 2013. On the soft-
ware ecosystem health of open source content management systems. In 5th Int.
workshop on software ecosystems (iwseco 2013). Citeseer, 38.

[134] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In Proc. of the 2015 10th joint meeting on foundations of software
engineering (Bergamo, Italy). ACM, New York, NY, USA, 805–816.

[135] Robert Viseur. 2013. Identifying success factors for the mozilla project. In IFIP
Int. conf. on Open Source Systems (Koper-Capodistria, Slovenia). Springer, Cham,
45–60.

[136] Paul van Vulpen, Abel Menkveld, and Slinger Jansen. 2017. Health Measurement
of Data-Scarce Software Ecosystems: A Case Study of Apple’s ResearchKit. In
Int. conf. of Software Business (Essen, Germany). Springer, Cham, 131–145.

[137] James Walden. 2020. The Impact of a Major Security Event on an Open Source
Project: The Case of OpenSSL. ACM, New York, NY, USA, 409–419.

[138] Jing Wang. 2012. Survival factors for Free Open Source Software projects: A
multi-stage perspective. European Management Journal 30, 4 (2012), 352–371.

[139] Zhendong Wang, Yang Feng, Yi Wang, James A Jones, and David Redmiles. 2020.
Unveiling elite developers’ activities in open source projects. ACM Transactions
on Software Engineering and Methodology 29, 3 (2020), 1–35.

[140] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proc. of the 18th Int. conf. on
evaluation and assessment in software engineering (London, United Kingdom).
ACM, New York, NY, USA, 1–10.

[141] Nebi Yılmaz and Ayça Kolukısa Tarhan. 2022. Quality evaluation models or
frameworks for open source software: A systematic literature review. Journal
of Software: Evolution and Process (2022), e2458.

[142] Likang Yin, Zhuangzhi Chen, Qi Xuan, and Vladimir Filkov. 2021. Sustainability
Forecasting for Apache Incubator Projects. ACM, New York, NY, USA, 1056–1067.

[143] Yiqing Yu, Alexander Benlian, and Thomas Hess. 2012. An empirical study
of volunteer members’ perceived turnover in open source software projects.
In 2012 45th Hawaii Int. conf. on System Sciences (Honoulu, HI, USA). IEEE,
3396–3405.

[144] Yang Yue, Yi Wang, and David Redmiles. 2022. Off to a Good Start: Dynamic
Contribution Patterns and Technical Success in AnOSSNewcomers Early Career.
IEEE Transactions on Software Engineering (2022), 1–1.

[145] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M Gonzalez-Barahona.
2019. On the diversity of software package popularity metrics: An empirical
study of npm. In 2019 IEEE 26th Int. conf. on software analysis, Evolution and
Reengineering (Hangzhou, China). IEEE, 589–593.

[146] Yuxia Zhang, Hui Liu, Xin Tan, Minghui Zhou, Zhi Jin, and Jiaxin Zhu. 2022.
Turnover of Companies in OpenStack: Prevalence and Rationale. ACM Trans.
Softw. Eng. Methodol. 31, 4, Article 75 (jul 2022), 24 pages.

[147] Jiayuan Zhou, Shaowei Wang, Yasutaka Kamei, Ahmed E Hassan, and Naoyasu
Ubayashi. 2022. Studying donations and their expenses in open source projects:
a case study of GitHub projects collecting donations through open collectives.
Empirical Software Engineering 27, 1 (2022), 1–38.

[148] Minghui Zhou and Audris Mockus. 2012. What make long term contributors:
Willingness and opportunity in OSS community. In 2012 34th Int. conf. on Soft-
ware Engineering (Zurich, Switzerland). IEEE, 518–528.

[149] Minghui Zhou, Audris Mockus, Xiujuan Ma, Lu Zhang, and Hong Mei. 2016.
Inflow and retention in oss communities with commercial involvement: A case
study of three hybrid projects. ACM Transactions on Software Engineering and
Methodology 25, 2 (2016), 1–29.

[150] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. 2019. What the Fork:
A Study of Inefficient and Efficient Forking Practices in Social Coding. In Proc.

OpenSym 2022, September 7–9, 2022, Madrid, Spain Johan Linåker, Efi Papatheocharous, and Thomas Olsson

of the 2019 27th ACM Joint Meeting on European Software Engineering conf. and
Symposium on the Foundations of Software Engineering (Tallinn, Estonia). ACM,

New York, NY, USA, 350–361.

	Abstract
	1 Introduction
	2 Research Design
	2.1 Inclusion and Exclusion Criteria
	2.2 Start set
	2.3 First Iteration
	2.4 Second iteration

	3 Results
	3.1 Actors-oriented characteristics
	3.2 Software-oriented characteristics
	3.3 Orchestration-oriented characteristics

	4 Discussion and Conclusions
	References

