
How to characterize the health of an Open Source Software
project? A snowball literature review of an emerging practice

Johan Linåker
johan.linaker@ri.se

RISE Research Institutes of Sweden
Lund, Sweden

Efi Papatheocharous
efi.papatheocharous@ri.se

RISE Research Institutes of Sweden
Lund, Sweden

Thomas Olsson
thomas.olsson@ri.se

RISE Research Institutes of Sweden
Lund, Sweden

ABSTRACT
Motivation: Society’s dependence on Open Source Software (OSS)
and the communities that maintain the OSS is ever-growing. So
are the potential risks of, e.g., vulnerabilities being introduced in
projects not actively maintained. By assessing an OSS project’s
capability to stay viable and maintained over time without interrup-
tion or weakening, i.e., the OSS health, users can consider the risk
implied by using the OSS as is, and if necessary, decide whether to
help improve the health or choose another option. However, such
assessment is complex as OSS health covers a wide range of sub-
topics, and existing support is limited. Aim: We aim to create an
overview of characteristics that affect the health of an OSS project
and enable the assessment thereof.Method: We conduct a snow-
ball literature review based on a start set of 9 papers, and identify
146 relevant papers over two iterations of forward and backward
snowballing. Health characteristics are elicited and coded using
structured and axial coding into a framework structure. Results:
The final framework consists of 107 health characteristics divided
among 15 themes. Characteristics address the socio-technical spec-
trum of the community of actors maintaining the OSS project, the
software and other deliverables being maintained, and the orches-
tration facilitating the maintenance. Characteristics are further
divided based on the level of abstraction they address, i.e., the OSS
project-level specifically, or the project’s overarching ecosystem
of related OSS projects. Conclusion: The framework provides an
overview of the wide span of health characteristics that may need
to be considered when evaluating OSS health and can serve as a
foundation both for research and practice.
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• Software and its engineering→Open sourcemodel; •Human-
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1 INTRODUCTION
Open Source Software (OSS) makes up a pivotal building block in
today’s digital infrastructure, both in industry and society at large.
Due to the nature of OSS, organizations thereby to a large extent
become reliant on the external maintenance of the different OSS
projects carried out within their respective communities. If an OSS
project is not actively maintained, the risk of vulnerabilities being
introduced (either intentionally or not) may rise [55]. These can in
turn spread with costly consequences within and between organi-
zations, potentially causing harm to the whole business ecosystems
and society in general (cf. Heartbleed and Log4Shell. Organizations,
therefore, need to consider the health of the OSS projects that they
use to manage the risk coupled with the usage, or dependence of
thereof [12, 120].

With OSS health, we consider an OSS project’s capability to stay
viable and maintained over time without interruption or weaken-
ing. A topic that we find complex given the wide variety of sub-
topics included on the socio-technical spectrum (e.g., toxicity [41],
sponsorships [95], marketing [88], diversity [47], badging [131],
burnout [89], newcomer barriers [122]). Further complexity is in-
troduced as OSS projects seldom can be considered in isolation
due to complex dependency networks of up- and downstream
projects [24, 132], implying that both the focal project and its over-
arching ecosystem of dependencies need to be considered.

Models and approaches have been developed by extant research
to evaluate OSS projects from different perspectives, such as sourc-
ing [75, 120], alliance partnerships [118], quality [141], and software
ecosystem health [64]. These approaches often have a specific focus
such as on source code quality [141], internal capabilities to con-
sume the OSS [12], or the potential to build professional business
relations through the community [118]. In contrast, there is still a
lack of a holistic view of the wider area of research that OSS health
implies (see e.g., [3, 50, 107, 122, 126]), as well as processes that can
help organizations to evaluate OSS projects. Interest has, however,
emerged around the topic, both in academia 1, industry [55], and
community settings 2. Of these, one notable exception exists in the
case of the CHAOSS project [55], a community project collabora-
tively developing health metrics within themes such as value, risk,

1https://soheal.github.io/
2https://sustainoss.org/
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or evolution. Within each theme, metrics are then provided under
several focus areas, each with a specific goal that the metrics aim
to provide answers to, e.g., to “[l]earn about the types and frequency
of activities involved in developing code” under the focus area Code
Development Activity within the Evolution theme3. No instructions
are provided on which metrics to choose. This is instead up to each
user to decide.

Extant research does, however, not provide an overview of this
wide area of research that OSS health implies (see e.g., [3, 50, 107,
122, 126]), even though community and industry-oriented initia-
tives are starting to emerge [55]. In this study, our goal is to address
this gap by initializing the development of an assessment frame-
work that can provide a comprehensive overview of the health of
an OSS project. Specifically, we seek to answer the question what
characteristics affect the health of an OSS project?

To address the question, we conducted a snowball literature
review [140] with a start set of 9 highly cited papers [3, 26, 50, 52,
64, 107, 122, 126, 132] after which 93 papers were identified in the
first iteration, and 53 additional in a second. We structurally coded
the characteristics, related metrics, and underpinning purpose for
a paper’s analysis based on an a-priori framework derived from
the ecosystem health literature [64, 82]. Through axial coding, we
then designed a framework consisting of 107 health characteristics
among 15 themes.

2 RESEARCH DESIGN
We conducted a literature review to answer the research ques-
tion on OSS health characterization using a snowballing search
strategy [140]. Using a start set of papers, snowballing activity is
conducted backward and forwards in iterations. In the backward
snowball search, references from a previously included paper in
the start set are each reviewed by their title, and place and context
in the paper where the reference is used. In a forward snowball
search, Google Scholar is used to identify papers citing a previously
included paper. Papers are reviewed by their title, followed by their
abstracts, and a full read, incrementally until a decision can be made
on whether the paper should be included or not.

Typically, the pattern continues until no new papers are iden-
tified [140]. In this study, however, the goal is not to conduct a
systematic literature review. Rather, we aim to collect a comprehen-
sive knowledge base that can provide an understanding of what
characteristics affect the health of an OSS project (RQ), and serve
as a foundation for an initial design of an artifact that, iteratively,
can be validated and improved in future work through empirical re-
search. Hence, we favor the saturation of characteristics rather than
new papers. Below, we describe our research design and process in
further detail.

2.1 Inclusion and Exclusion Criteria
In line with our definition of OSS health, along with guidance
from related work [64, 83], we defined the following inclusion and
exclusion criteria (denoted IC and EC respectively):

IC Papers on the growth, attraction, or retention of contributors
to OSS projects.

3https://github.com/chaoss/wg-evolution

Figure 1: Overview of the number of papers identified and
finally included in the first and second iteration of forward
and backward snowball searches. Numbers presented in the
Total columns are excluding duplicates.

IC Papers on the maintainers’ ability to maintain their OSS
projects.

IC Papers on the evaluation of quality or risks of an OSS project
related to its health.

IC Papers explicitly mentioning the keywords [64, 83] “health”,
“sustain*”, “propensity”, “longevity”, or “survival” in the con-
text of OSS in the title, abstract, introduction or conclusion
section.

EC Not explicitly focused on OSS or focused on (potential) con-
tributors’ motivations to engage in an OSS project.

EC Published before 2012 and not available in full text.
EC Grey and white literature, including book chapters, reports,

and student theses.
EC Idea and opinion papers, extended abstracts, duplicate stud-

ies, secondary studies.
EC For extension works most recent published work is included,

and others excluded.
EC Non-English papers.

2.2 Start set
As a first step, a start set of papers was to be identified as a baseline
for the snowballing iterations. Based on keyword searches using
Google Scholar it was found that ”health”, ”sustainability”, ”sustain”
and ”survival” were used interchangeably in alignment with our
previously defined definition of OSS health. A search string was
constructed accordingly and contextualized to reflect both general
and ”ecosystem”-focused literature:

(”open source” OR ”open-source”) AND (”project” OR ”ecosystem”)
AND (”health” OR ”sustainability” OR ”sustain” OR ”survival”)

This search string was applied through Google Scholar to gain
non-biased recommendations to any specific publishing venue [140].
From the search, three studies were identified as highly cited and
seminal papers in the area [52, 64, 132] among the first 20 results
presented, all passing defined criteria.

Due to the rather wide definition of OSS health, which is further
emphasized by Manikas and Hansen [83], we decided to specifically
look for systematic reviews that may reflect different aspects or
areas of the OSS health literature. We, therefore, again using Google
Scholar, applied the adapted search string:

(”open source” OR ”open-source”) AND (”project” OR ”ecosystem”)
AND (”health” OR ”sustainability” OR ”sustain” OR ”survival”) AND
”systematic” AND (”review” OR ”examination”)

Among the top 20 presented results, five reviews were identi-
fied as relevant secondary studies [3, 26, 50, 107, 122]. As they are

https://github.com/chaoss/wg-evolution
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secondary studies, they are not included in our analysis and only
make up a starting point to find primary studies relevant to our
study.

2.3 First Iteration
In the first iteration, the first author conducted a forward and
backward snowball search based on the previously defined start set.
The data collection was originally performed in January 2022 but
repeated in correlation with the second iteration between the 22nd
to 25th of May 2022 to identify recent publications. The (overall)
search resulted in an initial set of 150 tentatively included papers
from a total of 1206 papers (see Fig. 1).

In the following step, all three authors independently reviewed
a sample of 10 percent (i.e., 15 papers) of the tentatively included
papers to decide if papers would be included or not. In the same
process, the authors also extracted data where applicable. After
the independent review process, all three authors discussed and
compared findings to arrive at a common understanding of the
interpretation and final application of the inclusion and exclusion
criteria, as well as the performance of the data extraction process.
We continued by separately reviewing and coding papers based
on the a-priori codes: Purpose (P) for analyzing or discussing the
health of an OSS project; Characteristics (C) that affects or reflects
the health of an OSS project; Metrics (M) that can quantify, or
qualitatively describe, a characteristic.

During the continued review and coding process, two additional
negotiations were performed in terms of agreement of inclusion
and coding, each time picking a 10 percent random sample with
five papers coded from each of the three authors. This rendered in
an overall sample of 30 percent (i.e., 45 papers) being co-analyzed
by the three authors. Overall agreement was found on all three
occasions with minor adjustments coming out as an effect of the
negotiations, e.g., whether a certain extracted element should be
considered a purpose, characteristic or metric, or whether a paper
should be included or excluded based on the criteria. In the end, 93
papers were included and coded in the first iteration.

Following, we performed a structured coding of the character-
istics based on an a-priori-defined health framework inspired by
the work of Manikas and Hansen [83] and Jansen [64]. The frame-
work consists of two dimensions; the level of abstraction, and the
socio-technical dimension.

• Level of abstraction
– Network-level concerns characteristics related to the over-
arching software ecosystem or network that theOSS project
is part of, e.g., a language-specific package ecosystem as
NPM which in turn consists of multiple OSS components,
or the OpenStack ecosystem which in turn consists of
numerous of integrating sub-module OSS projects.

– Project-level concerns characteristics focused explicitly on
the OSS project.

• Socio-technical dimension
– Actors concerns the community of developers and users
that is part of the OSS project or its overarching software
ecosystem.

– Software concerns the OSS and related artifacts (e.g., doc-
umentation) that is being developed by the community

of actors, or individuals, that are either part of the OSS
project or its overarching ecosystem.

– Orchestration concerns the governance exercised in terms
of development, collaboration, and usage of the software
by its community of actors, either within an OSS project
or its the overarching ecosystem.

After the structural coding, an axial coding process was per-
formed within each of the six categories of codes that follows by
the two dimensions.

2.4 Second iteration
In the second iteration, the first author performed the forward
snowball, while the third author performed the backward snowball,
each resulting in 71 and 68 tentatively included papers out of 1901
and 658 papers respectively. The data collection was performed
from the 22nd to the 25th of May 2022. After a second review, 53
papers were included making a total of 146 papers, also considering
the first iteration, distributed between 2012-2022. The 53 papers
were coded using the structured and axial coding process as the
first iteration.

In the axial coding, the code bookwith themes and characteristics
generated from the first iteration, structured as per the a-priori
framework, was used as a foundation. The coding process rendered
in slight modifications, most prominently with the emergence of
a new theme focused on security aspects. On the general level,
however, we experienced a saturation in the type of characteristics
of health that appeared why we decided to stop.

The final framework was verified through peer debriefing and
discussions including all three authors and is further presented in
the following section.

3 RESULTS
The assessment framework consists of 107 health characteristics
divided among 15 themes each providing different perspectives on
OSS health (see tables 1, 2 and 3). Below we provide a summary per
theme along with an overarching question contextualizing how the
underpinning characteristics affect the health of an OSS project.
Codes are provided in parenthesis per characteristic (e.g., a-com-1,
meaning [actors-category] - [communication-theme] - and [first
characteristic] in the alphabetical order) connects to what papers
are related to the characteristic as presented in tables 1, 2 and 3.
We refer readers to the supplementary material to explore metrics
related to the characteristics as identified in the literature, and to
investigate the framework in-depth [78].

3.1 Actors-oriented characteristics
Communication: With communication, we consider the social in-
teractions internally between the actors within an OSS community,
and externally by the community in their outward-facing communi-
cation. They help to answer the question on how productive an OSS
project is in planning and discussing the evolution and development
of its technical and non-technical deliverables.

Literature highlights several ways in which the communication
takes place, such as mailing lists, issue trackers, and pull-requests.
The responsiveness shown by the community through these chan-
nels was a commonly referred to characteristic, both considering
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Table 1: Overview of actors-oriented health characteristics per theme. Characteristics listed under unique identifiers linking
to the respective codes in the online supplementary material [78], P = project level, and N = network-level focus.

Actors / Communication
a-com-1 Response-quality P: [138], [121] [58] [75]
a-com-2 Response-time P: [10], [55], [121], [23], [118], [58], [75], [67], [123], [22]
a-com-3 Social activity P: [86], [138], [24], [58], [75], [12], [67] N: [92]
a-com-4 Visibility P: [48], [49], [41], N: [92]
Actors / Culture
a-cult-1 Conflicts P: [20], [58], [45]
a-cult-2 Contributor satisfaction P: [58], [59]
a-cult-3 Contributor recognition P: [136]
a-cult-4 Language heterogeneity P: [58]
a-cult-5 Openness P: [121], [23], [118], [58] [103], [75]. [22]
a-cult-6 Sentiment P: [129], [53], [121], [106], [35], [58], [88], [43], [123]
Actors / Finance
a-fin-1 Financial stability P: [90], [138], [48], [71], [49]
a-fin-2 Financial support P: [138], [95], [71], [147], [135], [110]
Actors / Diversity
a-div-1 Application diversity P: [136] N: [92]
a-div-2 Demographic diversity P: [104], [48], [49], [18], [72], N: [47]
a-div-3 Organizational diversity P: [105], [136], [36]. [37], [132], [64], [12], N: [25], [100], [64]
a-div-4 Target users P: [138], [113]
a-div-5 Technical knowledge P: [104]
Actors / Popularity
a-pop-1 Competing projects P: [20], [132]
a-pop-2 End-user popularity P: [87], [136], [103], [145]
a-pop-3 External community interest P: [131], [148], [94], [136], [75], [109], [11], [145], [85], [12], [65], [67], [51]
a-pop-4 Project popularity N: [136], [92]
a-pop-5 SDG P: [59]
a-pop-6 Size P: [75]
a-pop-7 Technical adoption P: [145]
Actors / Stability
a-stab-1 Age P: [94]
a-stab-2 Attrition P: [108], [79]
a-stab-3 Ecosystem growth N: [100]
a-stab-4 Forks P: [112], N: [20], [23]
a-stab-5 Growth P: [133], [108], [48], [49], [79]
a-stab-6 Knowledge concentration P: [6], [111], [48], [13], [23], [49], [5], [44], [42], [99]
a-stab-7 Life-cycle stage P: [113], [20]
a-stab-8 Predicted evolution P: [76], [31], [142], [74], [98], [81], [12]
a-stab-9 Project growth N: [133], [100], [92]
a-stab-10 Retention P: [77], [108], [115], [124], [55], [36], [35], [89], [39], [9], [38], [73], [144]
a-stab-11 Size P: [48], [49], [36], [135], [135], [12], N: [91], [92]
a-stab-12 Turnover P: [46], [104], [146]
Actors / Technical activity
a-tech-1 Contributors’ development ac-

tivity
P: [21], [58], [75]

a-tech-2 Efficiency P: [131], [113], [121], [19], [27], [54]
a-tech-3 Maintainers’ development ac-

tivity
P: [23], [139], [75], [132]

a-tech-4 Non-code contributions P: [15], [130]
a-tech-5 Overall development activity P: [87], [133], [90], [97], [113], [24], [94], [136], [101], [21], [48], [71], [49],

[118], [66], [36], [103], [75], [137], [145], [4], [68], [134], [12], [132], [67], N:
[7], [93], [25], [100], [47], [64], [92]
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response time (a-com-2), and response quality (a-com-2), e.g., in
terms of the level of detail, complexity, and correctness. Another
characteristic adding to the response-time is the general social ac-
tivity (a-com-3), or frequency, in the communication of the OSS
project, e.g., the number of issues opened or comments posed in a
certain time interval. Outward-facing communication and visibil-
ity (a-com-4) was another aspect considered, e.g., how active the
community is in terms of social media presence.

Culture: Cultural characteristics help to answer the question
how able a community is to facilitate a positive and inclusive col-
laboration and dialogue among existing and potential actors. They
further help to contextualize the social behavior and norms ex-
pressed and experienced by the individuals present in a community.
The literature emphasizes the experience of contributors, especially
in terms of experiencing a personal satisfaction (a-cult-2), and be-
ing recognized for their contributions (a-cult-3), independent of
the contribution type and complexity. The presence of conflicts
(a-cult-1) and how these are managed by a community, as well as
the general openness (a-cult-5) in terms of the community’s mindset
in welcoming and encouraging contributions, inputs, and questions
are also highlighted by several studies. The general sentiment and
tone (a-cult-6) in the communication is another commonly referred
to characteristic in literature, where the presence of negative (e.g.,
insulting, entitled, arrogant, trolling, or unprofessional) and posi-
tive qualities (friendliness, welcoming, inclusion) was investigated.
Language heterogeneity (a-cult-4), or rather the lack of a common
language in a community, was a specific concern, investigated by
one study, that may cause cross-communication hurdles.

Diversity: Diversity-related characteristics describe the OSS
project’s or its overarching ecosystem’s ability to be receptive to
diversity and self-renew itself, thereby helping to answer the ques-
tion how able a community is to accommodate and attract a diverse
community of actors, while enabling existing and new use cases of the
OSS project. Among the literature surveyed, multiple angles were
covered. One study highlighted the aspect of diversity in the use
cases and applications based on the OSS project among its users
(a-div-1), aligning with the more general organizational diversity
(a-div-3) aspect considering e.g., the size, location, financial stability,
business model and influence of the organizations engaged in the
community. Demographic diversity (a-div-2), another multifaceted
aspect was also investigated, e.g., in terms of gender, culture, and
geographical situation. The level and diversity regarding the techni-
cal knowledge (a-div-5), e.g., considering programming languages,
among individuals was also raised as the diversity among the target
users (a-div-4) of the OSS project, e.g., tech savvy or general users.

Finance: Finance-related characteristics describe the financial
support (a-fin-2) in terms of funding and sponsorship provided to or
accepted by the OSS community, and the general financial stability
(a-fin-1) of the actors in the community that are maintaining or
contributing to the OSS project. These characteristics thereby help
to answer the question how financially viable actors are in an OSS
community in terms of being able to dedicate their time and resources
to the long-term maintenance of the OSS project.

Popularity: Characteristics related to popularity describe the
general external interest in the OSS project or its overarching
ecosystem, helping to answer the question how popular and well-
adopted an OSS project is among existing and potential end-users

and contributors. End-user popularity (a-pop-2), i.e., the level of
interest displayed in the project by its consumers, and the exter-
nal community interest (a-pop-3) shown towards the OSS project
were the two most highlighted characteristics in this theme. On an
ecosystem-level, one study highlighted the general popularity of
the projects hosted within the ecosystem (a-pop-4). The current
size of the OSS community in terms of users and developers (a-pop-
6), any connection between the OSS project’s use case(s) and the
Sustainable Development Goals (a-pop-5), along with the technical
inclusion and adoption of an OSS project in downstream software
implementations were other characteristics highlighted (a-pop-7).
The presence of competing projects was further emphasized as a
characteristic that may affect the popularity (a-pop-1).

Stability: Characteristics related to stability describe the re-
silience and robustness of the OSS community or its overarching
ecosystem in terms of their population, helping to answer the ques-
tion how capable the OSS project is in terms of preserving a critical
population of actors with the capability to maintain the OSS project
long-term. The growth (a-stab-5), retention (a-stab-10), attrition
(a-stab-2), and overall turnover (a-stab-12) and size (a-stab-11) of
users and developers of an OSS project are characteristics thor-
oughly investigated by literature. A related characteristic also thor-
oughly studied is the concentration or distribution of contributions
and knowledge to certain individuals or groupings within an OSS
project, commonly quantified and described through the bus- or
truck factor of a community (a-stab-6). Some studies focused on
characterizing OSS projects in terms of their state from a life-cycle
perspective (a-stab-7), while others were more forward-looking
and focused on predicting future development activity in the OSS
project, e.g., in terms of growth or dormancy (a-stab-8).

Technical activity: The technical activity covers characteris-
tics describing the overall technical activity, helping to answer the
question how productive an OSS project is in evolving and developing
its technical and non-technical deliverables. The theme may, in con-
trast to the communication theme be considered as the technical
pulse of a community and a sign of its productivity, both in terms
of technical and non-technical contributions towards the evolution
of the concerned OSS project. As per the literature, the technical
activity can be considered and evaluated both from the maintainers’
(a-tech-3), contributors’ (a-tech-1), and overall community perspec-
tive (a-tech-5). Effectiveness and ease of an OSS project in managing
and moving the development forward, e.g., in accepting and review-
ing issues and pull-requests, is also highlighted as an important
aspect (a-tech-2). Studies also highlight the importance of evalu-
ating the activity in terms of non-code contributions specifically
(a-tech-4).

3.2 Software-oriented characteristics
Development process: Characteristics relating to the develop-
ment process describe the quality and formality of the processes
and practices for how the development is performed, addressing
the question how capable a community is in terms of its development
process to maintain the OSS project to a high quality long-term. The
most highlighted characteristic concerns how the onboarding of
newcomers to the project is performed, e.g., in terms of mentorship,
the introduction of newcomers, and listing of good issues to start
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Table 2: Overview of software-oriented health characteristics per theme. Characteristics listed under unique identifiers linking
to the respective codes in the online supplementary material [78], P = project level, and N = network-level focus.

Software / Documentation
s-doc-1 Completeness [71], [121], [23], [118], [12], [22]
s-doc-2 Complexity [121], [73]
s-doc-3 Currentness P: [131], [121], [58], [123]
s-doc-4 Development docs P: [20], [121], [58], [103], [75], [22], [123]
s-doc-5 General docs P: [20], [103], [75]
s-doc-6 Language availability P: [58]
Software / Development process
s-dev-1 Coding conventions P: [121], [75], [137]
s-dev-2 Contribution process P: [121], [58], [73]
s-dev-3 Coordination P: [150]
s-dev-4 On-boarding P: [125], [14], [80], [10], [121], [23], [103], [59], [8], [123], [73], [40]
s-dev-5 Process maturity P: [48], [13], [49], [137], [123]
s-dev-6 Quality assurance P: [131], [20], [71], [121], [103], [75], [22]
s-dev-7 Support P: [12], [65], [62]
Software / License
s-lic-1 Flexibility P: [71]
s-lic-2 Implications P: [117], [138], [113], [20], [118], [135], [12], [132], [114]
s-lic-3 Legal jargon P: [58]
s-lic-4 Management P: [58]
Software / General factors
s-gen-1 Age P: [117]
s-gen-2 Application domain P: [113]
s-gen-3 Platform support P: [117], [75]
s-gen-4 Project complexity P: [121], [137], [22]
s-gen-5 Project independence P: [75]
s-gen-6 Standards compliance P: [75]
s-gen-7 Type of technologies P: [117], [20], [10], [58], [75], [22]
Software / Scaffolding
s-scaff-1 Build environment P: [121], [60], [123]
s-scaff-2 Continuous integration P: [20], [22]
s-scaff-3 Conversation history P: [58]
s-scaff-4 Infrastructure accessibility P: [121], [118], [58], [103], [132]
s-scaff-5 Infrastructure availability P: [103]
Software / Security
s-sec-1 Dependencies P: [71], [121]
s-sec-2 Dependency management P: [131], [34], [75], [32], [63], [56]
s-sec-3 Security practices P: [119], [75]
s-sec-4 Trustworthiness P: [75], [12]
s-sec-5 Vulnerability persistence P: [33], N: [102], [1]
s-sec-6 Vulnerability presence P: [28], [137], [102], [1]
Software / Technical quality
s-tech-1 Architecture quality P: [121], [75], [22], N: [25]
s-tech-2 Component quality P: [90], [84], N: [90]
s-tech-3 Contribution quality N: [47]
s-tech-4 Ease of integration P: [71]
s-tech-5 Maintainability P: [70], [20], [23], [132], [69], [57]
s-tech-6 Modularity P: [138], [150], [75], [135]
s-tech-7 Other non-functional require-

ments
P: [67], [75]

s-tech-8 Product quality P: [90], [138], [49], [118], [65]
s-tech-9 Source-code complexity P: [94], [71], [121], [58], [75], [137], [135]
s-tech-10 Source-code quality P: [116], [121], [118], [58], [103], [75], [146], [22], [134]
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with (s-dev-4). A relating characteristic concerns the presence and
quality of a contribution process, i.e., how contributions should be
made, reviewed, managed, and merged in the OSS project (s-dev-3).
Quality and maturity of processes and practices related to quality
assurance (s-dev-6), coordination (s-dev-3), coding conventions (s-
dev-1), and the development overall (s-dev-5) were also highlighted
by different studies. From (primarily) a commercial user perspec-
tive, the extent, and quality of any support services provided by the
OSS project or the actors engaged in or hosting the project, were
also lifted (s-dev-7).

Documentation: Documentation-related characteristics describe
the quality of general and technical documentation, addressing the
question how capable a community is to develop, persist, and dis-
seminate knowledge among current and future actors engaged in
the project. General documentation encompasses documentation
of general nature aimed at both the community, users, and others
interested in the OSS project, e.g., readme, homepage, and user
manuals (s-doc-5). Technical documentation refers to documenta-
tion covering different aspects of the development process, e.g., in
terms of onboarding, planning, contributions, code comments, and
quality assurance (s-doc-4). Certain characteristics focus explicitly
on quality aspects of the documentation in general, including the
completeness (s-doc-1), currentness (s-doc-3), as well as its level of
complexity, and ease of understanding (s-doc-2). One study high-
lighted the availability of multi-lingual documentation (s-doc-6).

General characteristics: A special group of characteristics looks
at how attractive an OSS project is based on its general technical fea-
tures. These characteristics include general user aspects such the
application domain, or product category, of the OSS (s-gen-2), the
type(s) of platforms and operating system(s) that the OSS is in-
tended for (s-gen-3), its age (s-gen-1), compliance with externally
defined standards (s-gen-6), and independence of external software
components (s-gen-5). Other characteristics are more technical,
such as the OSS project’s size and complexity (s-gen-4), and choice
of programming languages, libraries, frameworks, and protocols
(s-gen-7).

License: License-related characteristics were emphasized by sev-
eral studies, highlighting how license choices and related practices
may affect the popularity and attractiveness of an OSS project, both
for commercial actors and individuals. One study highlights whether
there is flexibility in terms of choosing between licenses for the
OSS project (s-lic-1). Most studies, however, emphasize the impor-
tance of the implications of the license on e.g., redistribution, usage,
and packaging (s-lic-2). On a more general level, the quality and
presence of practices and processes for license management in the
OSS project were emphasized as important for commercial actors
(s-lic-4), while the presence of legal jargon was highlighted as a
barrier to entry, especially for newcomers (s-lic-3).

Scaffolding: The scaffolding theme concerns how robust and
accessible the development and communication infrastructure used
in the OSS project is in terms of enabling a collaborative and high
quality maintenance of the project. This includes both the availability
(s-scaff-5), and accessibility and user-friendliness of tools used for
communication and development in the OSS project (s-scaff-4).
The presence and quality of continuous integration infrastructure,
automation, and practices in the OSS project were also highlighted
as important characteristics in terms of software quality and the

general attractiveness of a project (s-scaff-2). The ease of setting up
the build environment and compiling the OSS project is considered
an important aspect to enable newcomers and lower the barrier to
adoption of the OSS project (s-scaff-1).

Security: Characteristics in the security theme help answer the
question how robust an OSS project is in terms of mitigating and
managing vulnerabilities and security-related aspects in the current
and future maintenance of the project. More specifically, studies
have highlighted past, current, and future (predicted) presence of
vulnerabilities and characteristics thereof in dependencies of an
OSS project as an important characteristic (s-sec-6). So also the
address and persistence of past and current vulnerabilities in an
OSS project (s-sec-5). Practices relating to security (s-sec-3), and
specifically in terms of dependency management (s-sec-2), e.g., in
regards to managing ”conflicting versions of nested dependencies”
as well as updates and security patches, were also raised.

Technical quality: Technical quality is a rather wide theme
considering both the OSS project in general and its code base specif-
ically, helping to answer the question how robust an OSS project is
in terms of its technical quality, considering both a user and developer
perspective. Quality was highlighted both in terms of the product
(s-tech-8), component (s-tech-2), architecture (s-tech-1), and source
code level (s-tech 9). The complexity of the source code was specif-
ically highlighted in several studies, both in terms of attracting
and enabling developers to understand and contribute to the code
base, but also in terms of potential correlations to the presence of
bugs, vulnerabilities, and negative impact on quality requirements
in general. Although several quality requirements were highlighted
individually, modularity (s-tech-6), and maintainability (s-tech-5),
i.e., the ease of maintaining the source code of the OSS project),
were the two that received extra attention.

3.3 Orchestration-oriented characteristics
Orchestration: The orchestration-theme covers characteristics de-
scribing the governance structure and quality of the leadership,
helping to answer the question of how mature and open the orches-
tration is in the OSS project or its overarching ecosystem in terms of
enabling an open and inclusive collaboration and long-term mainte-
nance of the OSS project. Explicitness, formality, and general recog-
nition of the governance structure and leadership were especially
highlighted (o-orch-4). As was the way in which the individuals
in an OSS community are connected, collaborate, and grouped,
explored primarily through the concepts of community patterns
and community smells (o-orch-1). The same dimension concerns
the overarching ecosystem in how communities collaborate to cre-
ate resilience and synergies between each other (o-orch-2). Other
characteristics regard the leadership’s openness to input and trans-
parency of discussions with actors engaged or with an interest in
the OSS project (o-orch-6).

4 DISCUSSION AND CONCLUSIONS
Evaluating the health of an OSS project is a complex exercise. Know-
ing what to look for, and how to measure it may get out of hand
due to a wide focus, or risk becoming too narrow-minded so that
important aspects are missed. In this study, we set out to create an
overview of the wide range of sub-topics related to OSS health.
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Table 3: Overview of orchestration-oriented health characteristics per theme. Characteristics listed under unique identifiers
linking to the respective codes in the online supplementary material [78], P = project level, and N = network-level focus.

Orchestration / Orchestration
o-orch-1 Community structure P: [16], [128], [29], [30], [58], [2], [96], [17], [61], [127]
o-orch-2 Ecosystem structure N: [138], [48], [49], [132], [92]
o-orch-3 Explicitness of ecosystem N: [7]
o-orch-4 Governance P: [149], [138], [71], [118], [75], [135], [12], [12], N: [7]
o-orch-5 Information consistency N: [48], [49]
o-orch-6 KPI-programme N: [7]
o-orch-7 Openness P: [118], [58]
o-orch-8 Processes P: [143], [20], [23], [75]
o-orch-9 Trustworthiness N: [48], [49]

Based on a snowball study over two iterations, including 146
primary studies, we derive a framework that consists of 107 health
characteristics divided among 15 themes. The themes are dispersed
over the socio-technical spectrum with the least coverage in terms
of orchestration-related characteristics. It may further be noted that
a limited portion of the characteristics is observed on the network
level. This relates to the context of the studies included, whether
they have focused on an ecosystem (i.e., network) perspective, or
the OSS project more specifically. The identified studies confirm,
however, the importance of not analyzing an OSS project in isola-
tion. Its dependencies and ties to other projects play an important
part, e.g., in terms of resilience and security.

Giving a detailed presentation of the whole framework, including
all its characteristics and metrics is beyond the scope and format
of this paper, which is why we refer readers to the supplementary
material to investigate and explore the assessment framework in-
depth [78].

Similar to the CHAOSS project, our framework provides limited
guidance in terms of which characteristics to consider, and how.
Specifically, we provide limited support in regards to what metrics
to operationalize for each characteristic. Readers have to consider
metrics as presented through the audit trail and code structure
provided in the supplementary material [78]. In future research,
we aim to address this gap through further iterations to design
a more mature framework with related processes that can be tai-
lored based on organizational context and requirements. We aim to
leverage case studies, interview surveys and observations of health
assessments.

Regarding the limitations in general, it should be noted that we
do not claim to have systematically surveyed the literature. Rather,
we have made design choices that have limited the search scope and
potentially excluded papers (and characteristics) that might be of
relevance. We do believe, however, that the snowballing approach
has provided a broad sample of the literature, where we could
observe a saturation in elicited characteristics.
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