
HelloArduBot: A DSL For Teaching Programming To Incoming
Students With Open-source Robotic (OSR) Projects

Gustavo Slomski
gustavoslomski@gmail.com

Federal University of Technology, Paraná (UTFPR)
Francisco Beltrão, Brazil

Adair José Rohling
adairrohling@utfpr.edu.br

Federal University of Technology, Paraná (UTFPR)
Francisco Beltrão, Brazil

Paulo Varela
paulovarela@utfpr.edu.br

Federal University of Technology, Paraná (UTFPR)
Francisco Beltrão, Brazil

Michel Albonico
michelalbonico@utfpr.edu.br

Federal University of Technology, Paraná (UTFPR)
Francisco Beltrão, Brazil

ABSTRACT
Block-based languages have been used as a facilitator to teach
programming to newcomer and end-user programming students.
Another alternative is to abstract the programming domain by
using educational robots. Such approaches face some challenges.
Block-based languages are far different than conventional program-
ming languages, resulting in an abrupt transition between the two
paradigms. On the other hand, commercial educational robots are
limited to predesigned projects, which bounds students’ creativ-
ity. In this work, we propose an intermediate language (between
blocks and traditional language that focuses on Arduino, allowing a
wide range and student-designed projects. Preliminary results show
that our language is simpler than the native Arduino language and
that it would be a preferred alternative for beginner students of a
computer science undergraduate course.

CCS CONCEPTS
•Applied computing→ Interactive learning environments; • Soft-
ware and its engineering→Domain specific languages; •Com-
puter systems organization→ External interfaces for robotics.

KEYWORDS
teaching programming, domain-specific language, open-source,
robot-based.
ACM Reference Format:
Gustavo Slomski, Adair José Rohling, Paulo Varela, and Michel Albonico.
2022. HelloArduBot: A DSL For Teaching Programming To Incoming Stu-
dents With Open-source Robotic (OSR) Projects. Proc. ACM Meas. Anal.

Authors’ addresses: Gustavo Slomski, gustavoslomski@gmail.com, Federal Univer-
sity of Technology, Paraná (UTFPR), Francisco Beltrão, Brazil; Adair José Rohling,
adairrohling@utfpr.edu.br, Federal University of Technology, Paraná (UTFPR),
Francisco Beltrão, Brazil; Paulo Varela, paulovarela@utfpr.edu.br, Federal Univer-
sity of Technology, Paraná (UTFPR), Francisco Beltrão, Brazil; Michel Albonico,
michelalbonico@utfpr.edu.br, Federal University of Technology, Paraná (UTFPR),
Francisco Beltrão, Brazil.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2476-1249/2022/8-ART111 $15.00
https://doi.org/10.1145/3555051.3555070

Comput. Syst. 37, 4, Article 111 (August 2022), 5 pages. https://doi.org/10.
1145/3555051.3555070

1 INTRODUCTION
While learning programming, students usually struggle to under-
stand what to program since they may not be connected to the
topic [5]. Therefore, some professors rely on project-based learning
methodologies, usually by using educational robots, which makes
the programming topic more tangible [11, 18].

While robots help solve the problem of abstracting what to pro-
gram, the students still need to learn how to program, which may
be illogical at the beginning. Facing this, there has been a movement
of visual programming tools, such as Scratch [13]. At some point
after those, students need to move to real programming languages,
which is an abrupt paradigm change. The process can be more
didactic with a gradual learning approach, where single concepts
being introduced at each step [7].

A the end, it is importantwhere the students run their software.
Commercial robotic kits, such as Turtlebot and Lego Mindstorms,
are limited to specific types of robots, which restricts students’
project scope. Such kits are also expensive, the Turtlebot 4, for in-
stance, costs more than 1 thousand US dollars. As a solution, there
are available open-source hardware platforms [2], especially the Ar-
duino [3], which enables a broad range of low-cost robotic projects1.
Besides the low-cost nature, we choose Arduino among other pro-
totyping platforms2 since it also provides great documentation and
public projects.

Such contextualization leads us to three mainmotivations: i) the
use of robots for teaching programming is an important factor on
WHAT to program; ii) the programming language learning process
must be the most gradual as possible, so students assimilate HOW
to program; iii) WHERE to run robot-based software should be
open-source, so it allows a more creative learning.

The main goal of this work is to provide an intermediary pro-
gramming language specific for open-source robot-based projects.
Our programming language aims at making the transition between
visual and traditional programming languages gradual, besides
being also an alternative for abstract programming of robotics
projects. On the other hand, open-source prototyping platforms
should enable more creative projects.

1https://create.arduino.cc/projecthub
2https://craft.co/arduino/competitors

https://orcid.org/0000-0001-8518-0511
https://orcid.org/0000-0003-3684-9244
https://orcid.org/0000-0003-4916-2978
https://orcid.org/0000-0003-3606-3444
https://orcid.org/0000-0001-8518-0511
https://orcid.org/0000-0003-3684-9244
https://orcid.org/0000-0003-4916-2978
https://orcid.org/0000-0003-3606-3444
https://doi.org/10.1145/3555051.3555070
https://doi.org/10.1145/3555051.3555070
https://doi.org/10.1145/3555051.3555070
https://create.arduino.cc/projecthub
https://craft.co/arduino/competitors

OpenSym 2022, September 7–9, 2022, Madrid, Spain Gustavo Slomski, Adair José Rohling, Paulo Varela, and Michel Albonico

In order to reach the goals, we design a robot-based DSL lan-
guage and make it open-source. To model the language grammar,
we choose the XText framework [9], which is open-source and part
of Eclipse Modeling Framework [8] Our language abstracts a great
part of the programming complexity for educational robotics by
focusing only on robot’s capacities and the main programming
structures. As a consequence, the code should be cleaner and easier
to understand. Finally, our language allows the students to program
on Arduino micro-controllers, which enables a vast portfolio of
robotic projects. This work only highlights, preliminary results,
such as codes with the proposed language, and a brief survey in
an undergraduate computing science course. We plan to do a more
extensive evaluation of the tool artifacts and the language in future
work.

2 RELATEDWORK
Robotic has been present in educational projects since the late sev-
enties. Papert’s work on Logo Turtle [16] plays an important role
in such popularization [21], which also influenced the design of
educational products that are still on the market, such as Turtle-
bot [17] and Lego Mindstorms [15]. Despite Lego Mindstorms relies
on a visual programming language (block-based), their prototyping
platform is limited by only a few concepts, the same as for the
Turtlebot. Furthermore, the Turtlebot does not provide a friendly
programming interface/paradigm. Furthermore, both of them are
expensive if compared to open-source hardware, such as Arduino
and ESP32 [10], which would make their adoption restricted to
environments with a significant budget.

In the literature, we also find robotic-specific languages. Bail-
lie [4] proposes the URBI, a universal robotic body interface, a clien-
t/server system, where the robot works as a server, receiving com-
mands remotely. Despite it being limited to only one type of robot,
nowadays, such approachwould be easily replaced by robotic frame-
works, such as ROS [19]. Furthermore, the language, despite being
domain-specific, is not designed to be end-user friendly. Roland
and Gontean propose the AL5 language, which is restricted to a
specific subdomain of robotics (i.e., robotic arms). Despite their
language being designed for teaching, it aims at teaching the robot
movements, instead of using the robot as a real-world abstraction
for teaching programming. A work that goes towards our goal is the
one by Kim and Jeon [12], which proposes a language for teaching
programming with robotic projects. However, their work is based
on Lego Mindstorms robots, which downsides have already been
discussed before.

3 HELLOARDUBOT LANGUAGE
The proposed programming language is named HelloArduBot, a
robot-based domain specific language (DSL). The language name is
a reference to the common ”hello world” first coding (Hello), Ar-
duino used as the initial open-source prototyping platform (Ardu),
and the robotic domain (Bot). For achieving the goal, HelloArduBot
meets 4 main requirements:

• Req1. to address open-source robotic platforms, so the stu-
dents can express their creativity with a broader range of
possibilities, without the limited possibilities provided by
commercial platforms already discussed;

• Req2. to be robot-specific, so projects are more appealing to
the students, and they need to create their own projects;

• Req3. to introduce structured programming concepts, such
as loops and procedures;

• Req4. to be textual, so students become aware of how con-
ventional programming works;

We design our DSL grammar by using XText framework, wich is
part of Eclipse Modeling Framework, popular in the Model-Driven
Engineering (MDE) community. The language translation/building
is performed with XTend, part of the Xtext framework.

Figure 1 shows the partial Ecore metamodel of our language. As
a matter of presentation, we only present the parts related to the
robot’s interaction.

As illustrated in the meta-model, the robotic-related modeling is
simplified, divided into actuation and sensing. The sensing element
requires only two attributes: port to which the sensor is connected,
and type of port, i.e., digital or analog. The actuation is a branch
divided into two ways the robot interacts with the external world:
movement and notifications. The meta-model foresees two common
movements run and turn, for implementing wheeled robots and
angular positioning, such as for a robotic arm. We consider three
basic types of notification for User Interface (UI): flashing (with
LED flashes), display (with Liquid Crystal Displays - LCD)3, and
alarm (with buzzers). We choose to keep the language as simple as
possible. For further needs, the metamodel can be easily extended.

4 RESEARCH DESIGN/EVALUATION PLAN
In this work, we only present a new research idea and; therefore,
we do not conduct a deep validation, but already provide prelimi-
nary results. For the purpose of the DSL empirical evaluation, we
plan (in the future) to apply the new language in two scenarios:
i) on programming language introductory classes, and ii) on a sci-
ence outreach project at an elementary school (where we teach
basic robotics). The goal is to assess the impact of the HelloArd-
uBot language on programming understanding for both students,
newcomers, and robotic end-users.

The main points of the HelloArduBot language are to make
the code easier to understand, and as a consequence, to smooth
the transition between block-based and commercial programming
languages. Our evaluation plan goes toward such features, which
relies on two empirical user studies [20]: i) a survey approach, and ii)
a subject-based experiment. The first study investigates the syntax
comprehension of the HelloArduBot language, while the second
one investigates the speed and accuracy of reading the code.

In the first study, we plan to survey the students before they
start working on their projects. We will use a survey form that
addresses two main factors: i) the student’s current background in
a programming language, and ii) their comprehension of simple
code snippets in two languages (native Arduino and HelloArduBot).
It is expected that undergraduate students will already have some
background in programming language syntax, while elementary
school students will not (based on previous classes over the years).
Therefore, we can evaluate whether the HelloArduBot is easier to
comprehend, and which is its acceptance by those who have already
programmed in other introductory programming languages.
3Note that the display requires multiple pins, which are reserved (3-5 and 11-12).

HelloArduBot: A DSL For Teaching Programming To Incoming Students With Open-source Robotic (OSR) Projects OpenSym 2022, September 7–9, 2022, Madrid, Spain

Figure 1: Partial metamodel of the language grammar (model).

The second study is a controlled subject experiment, used to
evaluate the code written in the HelloArduBot language. The study
must be conducted only with undergraduate students, who already
studied basic programming languages (except the HelloArduBot).
We plan to write codes in native Arduino and HelloArduBot for two
different robotic projects. Then, we split the classes into groups,
where each group will receive an Arduino and a HelloArduBot
code, both from different projects. Without knowing what are the
projects, they must describe what those codes are supposed to do.
This will give us insights into how quick and accurate they can read
others’ code, and whether HelloArduBot can ease such a process
and improve readability [6].

After the evaluation experiments, we also plan to validate the
HelloArduBot language as an alternative to smooth the transition
between block-based and commercial programming languages. We
plan to conduct a qualitative analysis of the project completeness
when using the native Arduino and HelloArduBot languages. This
validation can also be applied to elementary school and undergradu-
ate students. Basically, we split the students into groups with similar
knowledge of programming languages, and challenge them to pro-
gram a robotic project. Part of the groups delivers only block-based
and native Arduino code, while others also deliver theHelloArduBot
language code. All the groups will work within a time-constrained
interval, and only at the robotic lab. Then, we qualitatively analyze
the features delivered by the groups.

5 PRELIMINARY RESULTS
This work results in i) an extensible metamodel that basis the He-
lloArduBot grammar; ii) the implementation of an intermediary
robot-specific language for teaching incoming programming stu-
dents; iii) an editor for writing the code with an auto-completion
method; iv) a language translator that can be extended to other

languages besides C++ (used by Arduino); v) a replication package
with all the software licensed under the MIT license4.

Our Ecore metamodel can work as a reference for further Eclipse
plugins or even standalone MDE applications. Our language ab-
breviates the complexity of robotics programming to simple tasks,
which still allows a comprehensible number of projects to be imple-
mented. Its editor is available online, and can also run in standalone
mode. The editor comprehends a language translator, where the
Arduino code can be downloaded, and then uploaded straight to the
robot. Since all the software artifacts are publicly available under
an open-source license, they can also be adapted to further needs.

5.1 HelloArduBot Coding
Figure 2, shows a simple public robotic project5 that we use as study
case to exemplify the difference between coding in native Arduino
and HelloArduBot languages. It refers to a simple public robotic
project coding that rotates a DC motor left and right. Listings 1
and 2 show the code for the case study in both, Arduino native and
HelloArduBot language, where the simplicity of the HelloArduBot
is evident.

4https://anonymous.4open.science/r/HelloArduBot-672D/
5https://docs.arduino.cc/tutorials/motor-shield-rev3/msr3-controlling-dc-motor

https://anonymous.4open.science/r/HelloArduBot-672D/
https://docs.arduino.cc/tutorials/motor-shield-rev3/msr3-controlling-dc-motor

OpenSym 2022, September 7–9, 2022, Madrid, Spain Gustavo Slomski, Adair José Rohling, Paulo Varela, and Michel Albonico

Figure 2: Sketch of the case study robotic project.

1 int directionPin = 12;
int pwmPin = 3;

3 int brakePin = 9;
bool directionState;

5
void setup() {

7 pinMode(directionPin , OUTPUT);
pinMode(pwmPin , OUTPUT);

9 pinMode(brakePin , OUTPUT);
}

11
void loop() {

13 directionState = !directionState;
if(directionState == false){

15 digitalWrite(directionPin , LOW);
} else{

17 digitalWrite(directionPin , HIGH);
}

19 digitalWrite(brakePin , LOW);
analogWrite(pwmPin , 30);

21 delay (2000);
digitalWrite(brakePin , HIGH);

23 analogWrite(pwmPin , 0);
delays (2000);

25 }

Listing 1: Arduino native code.

1 Vars
Number duration = 5000

3 Number direction = FWD
Begin

5 IF direction == FWD THEN
direction = BKWD

7 ELSE
direction = FWD

9 FI
run(direction , duration)

11 End

Listing 2: HelloArduBot code.

As a matter of further comparison, Figure 3 illustrates the num-
ber of words and characters for the case study and four other public
Arduino projects: i) blink a LED6, ii) buzzer7, iii) ultrassonic sen-
sor8, iv) stepper motor9. Reviewers can assess such codes that are
provided in the replication package. Our hypothesis here is that:
6https://www.arduino.cc/en/Tutorial/BuiltInExamples/Blink
7https://create.arduino.cc/projecthub/SURYATEJA/use-a-buzzer-module-piezo-
speaker-using-arduino-uno-89df45
8https://create.arduino.cc/projecthub/abdularbi17/ultrasonic-sensor-hc-sr04-with-
arduino-tutorial-327ff6
9https://www.arduino.cc/en/Tutorial/LibraryExamples/StepperSpeedControl

less words and, as consequence, less characters may be more appealing
for the students, and cause less confusion.

(a) Number of words and characters.

(b) Code reduction with HelloArduBot.

Figure 3: Comparison between native Arduino and HelloAr-
duBot code.

In the figure, we see that despite HelloArduBot results in fewer
words/characters, at least≈ 20% smaller than native Arduino (higher
in most of the cases), there is no proportionality between native
Arduino and HelloArduBot codes (see Blink LED results).

We see that HelloArduBot code is simpler than the native Ar-
duino one, with more abstract concepts. For instance, instead of
setting up all the environment, including the DC motors for the
robot’s wheel, it is only necessary to program the run method call.
This also results in fewer words/characters (in the example, 26/161
vs 51/468). This is confirmed in Figure 3a, where for all the examples,
the HelloArduBot resulted in fewer words and characters. Figure 3b
depicts that difference, which goes from ≈ 20 – ≈ 60%.

5.2 Survey – Computer Science Students
We also survey 63 computer science students about the HelloAr-
duBot idea. The survey questions try to investigate two main cor-
relations: i) previous knowledge in programming languages (0 for
none or 1 for some) and their preference for an intermediary lan-
guage such as HelloArduBot (we provide code snippets), ii) how

https://www.arduino.cc/en/Tutorial/BuiltInExamples/Blink
https://create.arduino.cc/projecthub/SURYATEJA/use-a-buzzer-module-piezo-speaker-using-arduino-uno-89df45
https://create.arduino.cc/projecthub/SURYATEJA/use-a-buzzer-module-piezo-speaker-using-arduino-uno-89df45
https://create.arduino.cc/projecthub/abdularbi17/ultrasonic-sensor-hc-sr04-with-arduino-tutorial-327ff6
https://create.arduino.cc/projecthub/abdularbi17/ultrasonic-sensor-hc-sr04-with-arduino-tutorial-327ff6
 https://www.arduino.cc/en/Tutorial/LibraryExamples/StepperSpeedControl

HelloArduBot: A DSL For Teaching Programming To Incoming Students With Open-source Robotic (OSR) Projects OpenSym 2022, September 7–9, 2022, Madrid, Spain

they classify their own programming skills (0–5) and their prefer-
ence for a intermediary language such as HelloArduBot.

Figure 4 depicts the result of the preliminary survey with the
students. We see that most of the students would prefer an in-
termediary language (Figure 4a), even if they already have some
knowledge in programming languages. As depicted in Figure 4b,
none student auto-classified (her)himself as expert. Such figure
also shows a pre-ference for HelloArduBot for beginners (levels 0-2
mainly), which indeed is the its main purpose.

an

sw
er

s

0

10

20

30

40

Yes No

(a) Previous knowledge in programming.

an

sw
er

s

0

5

10

15

20

0 1 2 3 4 5

(b) Programming skill.

Figure 4: Computer science students’ interest in theHelloAr-
duBot language.

6 CONCLUSION
The HelloArduBot language impacts at least two main scenarios:
i) teaching end-user programmers, such as school students with
robotics in their curriculum; and ii) teaching introductory program-
ming classes for computer science. Given its higher abstraction
level, it is expected to smoother programming paradigms transition.

It is also expected that the language is used directly for abstract
programming in robotic classes.

In future work, as stated in Section 4 we must evaluate our ap-
proach with elementary school and undergraduate students, com-
paring it to conventional programming languages. We plan to con-
vert graphical programming languages (such as Ardublock [1],
which makes the process even more facilitated. So far, the stu-
dents must write the HelloArduBot code from scratch. Finally, the
language should also be extended to support open-source robot-
specific frameworks, such as ROS [19] and micro-ROS [14], so robot
prototypes can be used in real-world robotic environments.

REFERENCES
[1] A Graphical Programming Language for Arduino. 2022. Ardublock [Online].

Retrieved May 20, 2022 from http://blog.ardublock.com/
[2] Michel Albonico, Adair Rohling, Juliano Santos, and Paulo Varela. 2021. Mining

Evidences of Internet of Robotic Things (IoRT) Software from Open Source
Projects. In 15th Brazilian Symposium on Software Components, Architectures, and
Reuse (Joinville, Brazil) (SBCARS ’21). Association for Computing Machinery,
New York, NY, USA, 71–79. https://doi.org/10.1145/3483899.3483900

[3] Arduino. 2022. Arduino[Online]. Retrieved May 20, 2022 from https://www.
arduino.cc/

[4] J.-C. Baillie. 2005. URBI: towards a universal robotic low-level programming
language. In 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 820–825. https://doi.org/10.1109/IROS.2005.1545467

[5] Gillian Bain and Ian Barnes. 2014. Why is programming so hard to learn?. In
Proceedings of the 2014 conference on Innovation & technology in computer science
education.

[6] Dustin Boswell and Trevor Foucher. 2011. The Art of Readable Code: Simple
and Practical Techniques for Writing Better Code. " O’Reilly Media, Inc.". https:
//www.oreilly.com/library/view/the-art-of/9781449318482/ch01.html

[7] Walter Cazzola and Diego Mathias Olivares. 2015. Gradually learning program-
ming supported by a growable programming language. IEEE Transactions on
Emerging Topics in Computing 4, 3 (2015), 404–415.

[8] Eclipse Foundation. 2022. Eclipse Modeling Project [Online]. Retrieved May 20,
2022 from https://projects.eclipse.org/projects/modeling

[9] Eclipse Foundation. 2022. Xtext - Language Engineering Made Easy [Online].
Retrieved May 20, 2022 from https://www.eclipse.org/Xtext

[10] Expressif Systems. 2022. ESP32 [Online]. Retrieved May 20, 2022 from https:
//www.espressif.com/en/products/socs/esp32

[11] Bassey Isong. 2014. A Methodology for Teaching Computer Programming: first
year students’ perspective. IJMECS 6, 9 (2014), 15.

[12] Seung Han Kim and Jae Wook Jeon. 2006. Educating C language using LEGO
Mindstorms robotic invention system 2.0. In Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006. IEEE, 715–720.

[13] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1–15.

[14] MicroROS. 2022. ROS 2 Onto Microcontrollers [Online]. Retrieved May 20, 2022
from https://micro.ros.org/

[15] Mindstorms. 2022. Lego [Online]. Retrieved May 20, 2022 from https://www.
lego.com/en-gb/themes/mindstorms

[16] MIT. 2022. Logo History [Online]. Retrieved May 20, 2022 from https://el.media.
mit.edu/logo-foundation/what_is_logo/history.html

[17] Open Source Robotics Foundation. 2022. TurtleBot [Online]. Retrieved May 20,
2022 from https://www.turtlebot.com/

[18] Martinha Piteira and Carlos Costa. 2013. Learning computer programming: study
of difficulties in learning programming. In Proceedings of the 2013 International
Conference on Information Systems and Design of Communication. 75–80.

[19] ROS. 2022. Robot Operating System [Online]. Retrieved May 20, 2022 from
https://www.ros.org/

[20] Mazin Saeed, Faisal Saleh, Sadiq Al-Insaif, andMohamed El-Attar. 2016. Empirical
validating the cognitive effectiveness of a new feature diagrams visual syntax.
Information and Software Technology 71 (2016), 1–26.

[21] Cynthia J Solomon and Seymour Papert. 1976. A case study of a young child
doing Turtle Graphics in LOGO. In Proceedings of the June 7-10, 1976, national
computer conference and exposition. 1049–1056.

http://blog.ardublock.com/
https://doi.org/10.1145/3483899.3483900
https://www.arduino.cc/
https://www.arduino.cc/
https://doi.org/10.1109/IROS.2005.1545467
https://www.oreilly.com/library/view/the-art-of/9781449318482/ch01.html
https://www.oreilly.com/library/view/the-art-of/9781449318482/ch01.html
https://projects.eclipse.org/projects/modeling
https://www.eclipse.org/Xtext
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
https://micro.ros.org/
https://www.lego.com/en-gb/themes/mindstorms
https://www.lego.com/en-gb/themes/mindstorms
https://el.media.mit.edu/logo-foundation/what_is_logo/history.html
https://el.media.mit.edu/logo-foundation/what_is_logo/history.html
https://www.turtlebot.com/
https://www.ros.org/

	Abstract
	1 Introduction
	2 Related Work
	3 HelloArduBot Language
	4 Research Design/Evaluation Plan
	5 Preliminary Results
	5.1 HelloArduBot Coding
	5.2 Survey – Computer Science Students

	6 Conclusion
	References

