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ABSTRACT 

Wikis have become a popular online collaboration platform. Their 
open nature can, and indeed does, lead to a large number of 
editors of their articles, who create a large number of revisions. 
These editors make various types of edits on an article, from 
minor ones such as spelling correction and text formatting, to 
major revisions such as new content introduction, whole article 
re-structuring, etc. Given the enormous number of revisions, it is 
difficult to identify the type of contributions made in these 
revisions through human observation alone. Moreover, different 
types of edits imply different edit significance. A revision that 
introduces new content is arguably more significant than a 
revision making a few spelling corrections. By taking edit types 
into account, better measurements of edit significance can be 
produced. This paper proposes a method for categorizing and 
presenting edits in an intuitive way and with a flexible measure of 
significance of each individual editor’s contributions. 

Categories and Subject Descriptors 

H.5.3 [Information Interfaces and Presentation]: Group and 
Organization Interfaces – collaborative computing. I.7.1 

[Document and Text Processing]: Document and Text Editing – 
Version control. 

General Terms 

Algorithms, Measurement, Design, Experimentation. 

Keywords 

Wiki, revision history, text differencing, edit categorization, edit 
significance. 

1. INTRODUCTION 
Personal computers have long become the main writing tool for 
many people, and collaborative writing has similarly moved to 

computer-based applications. Web-based collaborative writing 
platforms, such as wikis, allow more speedy and convenient 
collaborative writing than before. 

Wikis support easy creation and editing of interlinked pages by 
using a simplified markup language, and editing directly within a 
web browser [10]. They are designed in this way to encourage 
broad participation in content creation. People use wikis to 
facilitate interaction and collaboration, including on community 
websites, corporate intranets, and knowledge management 
systems. Wikipedia is a well-known example of a wiki-based 
website, which uses a wiki system to develop an online 
encyclopedia that is written and edited in its entirety by a 
community of readers, or rather reader-editors. 

A wiki software usually saves all previous versions, also called 
revisions, of any single page. Typically a “history” view is 
provided to present all previous versions to the user, enabling all 
participating writers to track the edit process and progress of an 
article. The history view normally offers a “diff” function which 
displays the difference (addition, deletion and modification) 
between any two distinct versions of an article, so editors do not 
need to manually compare the text by themselves [5]. In addition, 
summaries of each edit may also be provided, including the size 
difference in characters from the previous version, a short line of 
summary text provided by the editor, etc. These summaries can 
help other editors to understand what has changed in the new 
version without having to look into the text. However, the 
difference counted as a number of characters does not expose the 
nature of the edit, and a summary text is not always provided. 
Even where a summary text is provided it may be unable to 
comprehensively reflect the nature of the edit. 

There are scenarios when we wish to know which kind and how 
significant a change has happened in an edited text without 
having to manually examine each version of a document. For 
example, in a large wiki with many active editors, the number of 
documents and their respective versions can be enormous, making 
it difficult, if not impossible, to identify the role of each writer 
(e.g. who is content contributor, who is editor, who formats 
content, who is proofreader etc.) through unaided human effort. A 
computer aid to derive an intuitive editing history, reflecting high-
level changes between versions in a way close to human 
perception, would allow users and other applications to know 
what kind of changes actually happened in each edit, rather than 
just a “differences of words” which wiki systems offer nowadays. 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 

otherwise, to republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

 
WikiSym '10, July 7-9, 2010, Gdańsk, Poland 

Copyright © 2010 ACM 978-1-4503-0056-8/10/07... $10.00 



An edit history analyzer can help us to solve the above problem. 
Such an analyzer takes two versions of a document as input, 
processes and analyzes the relation between these versions, and 
then outputs a list of edits that have been made, identifying their 
type and significance. From that detailed edit information one can 
further derive more summarized information, including a 
classification of authors by their usual type of edit, automatically 
generate an edit summary, measure an edit’s significance, and 
many others. This paper proposes such an edit history analyzer. 

Significance is a subjective measure of how important a given 
editor’s contribution is. Significance depends on the type of a 
given edit, as well as its volume. Edit types include actions such 
as adding text, inserting references, formatting text, correcting 
spelling, etc. Adding new text to an article is usually regarded as 
the most significant type of edit, whereas fixing spelling and 
punctuation errors could be considered one of the least significant 
ones. The exact ranking and relative value of these types is 
dependent on the value system of a given community of wiki 
editors and should be determined through group consensus. Given 
a new revision of a text, the individual edits within it can be 
identified and categorized over the set of defined edit types. The 
volume of text involved in these types of edits (such as adding 
new text), or the number of occurrences of a particular type of 
edit (such as inserting an internal link) determines the magnitude 
of edit significance. With a system of edit significance in place, it 
can be calculated to determine who the most significant authors of 
an article are. Thus, similar to how author names appear in their 
order of significance of contribution on a traditional publication 
such as this paper, a wiki article too could show an ordered list of 
its authors based on calculated significance taken over all of its 
revisions. 

Intuitiveness means that a software’s interpretation of a fact, such 
as what types of edits someone has performed, is in agreement 
with a majority of users. 

The remainder of this paper is structured as follows. After 
reviewing prior work on differencing, categorizing versioned text, 
and analyzing editing histories in wikis in Section 2, we propose 
our method of high-level edit history analysis in Section 3. In 
Section 4 we present a prototype implementation of our method, 
and show a preliminary evaluation of our work, using real world 
examples, in Section 5. Finally we discuss some potential 
applications of our method in Section 6. 

2. RELATED WORK 
Several researches have focused on analyzing and visualizing edit 
histories of articles in wiki systems. Edit histories have been 
visualized as a history flow diagram (Viégas et al. [18]), and as a 
tree of versions (Sabel [13], Ekstrand and Riedl [6]). Those 
visualizations are generally based on simple equality comparisons, 
or similarities between versions based on sentence or word 
differences. None of them classifies edits into different categories. 

Author contribution measure is another area that frequently digs 
into the version history of articles. Existing methods depend on 
word-based text differences (Adler et al. [2], Kittur et al. [9]) with 
no distinction of types of content (body text, reference, image, 
markup etc.). To the best of our knowledge, we are not aware of 
any prior work that attempts to categorize edits in a wiki by an 
algorithm as we propose, besides labeling reverted versions. 

In the following paragraphs, we review some text differencing 
algorithms used by other wiki researchers, as well as some 
research related to categorizing edits. 

2.1 Differencing Algorithms 
Longest common subsequence (LCS) based text differencing 
methods, represented by the Unix diff utility [8], produce a 
difference statement in terms of insertion, deletion and 
replacements relative to an old version of a text. MediaWiki, the 
software which Wikipedia runs on, employs this kind of method 
to display differences of wikitext. Some methods are based on it 
to calculate edit distances as well, e.g. [9] and [13]. However, the 
kind of difference statement produced is not very satisfactory, as 
it does not recognize text movements, i.e. where a piece of text 
has moved up or down relative to its previous location. In this 
case the output of these methods is a deletion of the text in the old 
version and the addition of the same piece of text in the new 
version. Text movement is a possible edit action in many 
situations, for example when re-structuring an article. Therefore, a 
difference engine that marks the differences in terms of insertion, 
deletion, block moves, and replacements would be preferable. 

Tichy [17] has proposed a different approach for text 
differencing. His algorithm generates an edit script in terms of 
copying blocks of characters from the old version, and then 
adding missing characters to construct the new version. While the 
algorithm originally aims to produce a minimal edit script, it can 
be modified to produce a difference statement in terms of 
insertion, deletion, replacement, and block match. Especially 
block matches can be out of order, which makes the algorithm 
more preferable than the LCS-based method when content 
movements are of interest to the user. This algorithm was adopted 
and refined by Adler and de Alfaro [1] for author trust calculation 
in Wikipedia, implemented in their WikiTrust system, and later 
used in author contribution measures [2]. 

In terms of granularity, differencing on word level alone cannot 
generate a good difference statement for human understanding, as 
Neuwirth et al. [13] suggest. Their proposed algorithm is based on 
Myers’ basic diff algorithm [12]. It differences two versions of a 
document with hierarchical decomposition strategy that exploits 
the grain size (paragraph, sentence, phrase, word, character). 
Their method differences versions of a document of coarse grain 
size (e.g. paragraph) first, and if the compared strings have little 
in common it is reported as “whole string has changed”. On the 
contrary, if the compared string has many commonalities, finer 
grain size differencing is conducted. This process repeats until 
differencing is performed on the finest level. Since it only shows 
fine level differences when the edit distances are small, and 
concludes that two blocks are entirely different when the edit 
distances are big, fragile difference statements are avoided. 

MediaWiki currently performs two levels of text differencing, 
paragraph level and word level, but word level differencing is 
presented even if a paragraph is changed heavily. This approach 
sometimes generates hard-to-read difference statements. Figure 1 
shows an example illustrating this problem, extracted from an 
article in the English Wikipedia1. 

                                                                 
1
http://en.wikipedia.org/w/index.php?title=United_

States_Department_of_State&diff=prev&oldid=32189

0088 



2.2 Edit Categorization 
A wiki teaching environment by de Pedro [4] categorizes edits for 
student evaluation purpose. The system requires its student editors 
to categorize their own edit into one or more categories, for 
example “markup improvement” or “new information”. If the 
system were able to suggest edit categories for students, as we are 
proposing here, time used to categorize edits could be reduced. 

A study of the evolution of a concept in the Wikipedia article 
“Web 2.0” conducted by Gorgeon and Swanson [7] classifies 
edits into several categories. Some of these categories are already 
in common use among Wikipedia editors, such as “vandalism” 
and “spam”. Others are defined by the authors for their study 
purpose, for example “unchallenged” and “challenged” edits. 
They examine each of the 3,665 edits individually to classify 
them, a task that is described in the paper as “simple but tedious”. 
This would be another suitable candidate for automated 
classification by software. If the task could be automated, or at 
least semi-automated, articles and versions could be examined on 
a larger scale, and a bigger picture of article evolution in general 
could be drawn.  

3. EDIT HISTORY ANALYZER 
Our proposed edit history analyzer takes two versions of a 
document as input, analyses the differences, and outputs a list of 
summaries of changes. The analyzer is divided into four parts, 
working step-by-step. Following the order of steps, they are 
lexical analyzer, text difference engine, action categorizer, and 
history summarizer. Figure 2 depicts their relationship. 

The lexical analyzer breaks the raw text into tokens and sentences 
so that the text can be analyzed easier in the following steps. The 
text difference engine compares two versions of the text, and 
produces a list of edits in terms of basic edit actions, such as 
insertion, deletion, movement and replacement. The action 
categorizer takes the basic edit actions and classifies them into 
different categories, from minor ones like spelling correction, 
sentence re-arrangement, inter-language links, internal link 
insertion, to major revisions like new content addition, whole 
article re-structuring, and many others. The history summarizer 
collects all action meta-information recognized in the previous 
step, and makes summarized statements about the revision, such 

as the proportion of newly added content, spelling corrections, 
formatting, etc. 

The following sub-sections describe each step of the proposed 
method in more detail. 

3.1 Lexical Analyzer 
When the system receives a new version of an article, it first 
passes the text into a lexical analyzer. In our system, the lexical 
analyzer is used to break an article’s raw character stream into 
tokens of words, punctuation and markup symbols, and then break 
the token stream into sentences. 

3.1.1 Tokenizer 
The tokenizer transforms a sequence of characters into a sequence 
of tokens by applying certain grammar rules. It is used in our 
system to make sure markup symbols are not broken apart, and to 
identify those markups. Each wiki software usually has its own 
specific set of system-specific markups. For example, MediaWiki 
and Twiki use a different set of markup symbols. In the 
tokenizing process we translate the markup symbols into tokens 
that reflect the semantics of the markup, thus platform-neutral 
differencing and categorizing is possible. Since different markup 
languages have different language specifications, a different set of 
grammar rules is needed for the tokenizer. Table 1 shows some 
examples of wiki markup used by MediaWiki. 

To illustrate the usage of the tokenizer, here is an example 
wikitext in MediaWiki markup format. The original source text is: 

'''Paris''' ({{pron-en|'parıs}} in [[English 

language|English]]) is the [[Capital 

(political)|capital]] and [[primate city]] of 

[[France]]. 

After lexical analysis, it is broken into a string of tokens. Symbol 
characters that belong to wiki markup are grouped together as a 
single token. 

''' Paris ''' ( {{ pron-en | ' parıs }} in 

[[ English language | English ]] ) is the 

[[ Capital ( political ) | capital ]] and 

[[ primate city ]] of [[ France ]] . 

Figure 1. A hard-to-read difference statement in English 

Wikipedia 
 

Figure 2. General structure of proposed edit history 

analyzer 



A type is given to every token during the lexical analysis process. 
The first token of the above example is of type “bold-open”, 
followed by a “word” token, “bold-close”, “punctuation”, 
“template-opening”, “template-name”, and so on. Type of token is 
used in the following steps to split token sequences into sentences, 
and categorize edit actions. 

3.1.2 Sentence Splitter 
After tokenizing the source wikitext, the token sequence is passed 
to a sentence splitter, which splits the sequence into a number of 
sentences.  

Methods have been proposed on this topic by researchers in the 
natural language processing area, e.g. SATZ, which uses neural 
network based methods [14]. We are currently using a naïve 
sentence splitting method, which delimits the sequence when it 
encounters sentence-ending punctuations, such as a period (full 
stop), exclamation mark or question mark. A few exception rules 
have also been implemented, e.g. “repetition of single character 
and dot” pattern is recognized as an acronym. While this naïve 
method is not perfect, it works in most test cases in Simple 
English Wikipedia. A more sophisticated method may be 
employed in the future. 

Besides basic plaintext sentence delimiting, we should also 
consider a few additional situations in the context of wikitext: 

� A list item markup symbol should be treated as a sentence 
delimiter. 

� A heading should be treated as a sentence by itself. The same 
applies to category and inter-language links. 

� In-line references should be extracted from the content text and 
treated as a separate sentence. This is because references are 
presented separately in the article. 

3.2 Text Difference Engine 
The next step of analysis is to calculate the difference to the 
previous revision, in order to find out what has changed from the 
previous version to the current version. 

As discussed in Section 2.1, single level text differencing is not 
capable of generating a good difference statement for human 
understanding, thus two levels of differencing are performed. The 
two levels we use are sentence level and token level. Unlike 
MediaWiki, we use sentence level instead of paragraph level as 

the larger unit, because it is the basic linguistic unit in human 
language. Tokens are used instead of just words, because we want 
the system to be aware of markup changes. 

First, sentence level matching is performed, looking for exact 
matches between whole sentences. Then for all sentences not 
matching exactly, token level differencing is performed. Finally, 
sentence matching rates between old version sentences and new 
version sentences are calculated based on token level difference 
results for approximate sentence matching. 

3.2.1 Basic Edit Actions 
Given a document D with versions V1, V2, …, Vn, each of them 
contains a sequence of tokens Vi = [t1, t2, …, tl]. In the following 
paragraphs, we denote 

� Vi[x]: xth token in the token sequence of Vi 

� Vi[x…y]: subsequence of tokens of Vi, from xth token to yth token 
(1 ≤ x ≤ y ≤ l). Note that Vi[x…x] = Vi[x]. We define Vi[x…y] = 
[] (empty sequence) when x > y. 

� li: number of tokens in Vi. 

� a^b: concatenation operation, which creates a new token 
sequence from all tokens in first operand a, followed by all 
tokens in second operand b. 

A basic operation op transforms a sequence of tokens from one 
state to another state, and includes insertion, deletion, movement 
and replacement. A revision Ri is a sequence of basic operations 
opi,j that are applied to Vi to construct Vi+1. The following defines 
each of the four basic operations: 

� Insertion is an operation that introduces a sequence of n new 
tokens Tnew = [t’1, t’2, …, t’n] after a certain position p.  

Insert(Tnew, p): Vi →  Vi [1…p] ^ Tnew ^ Vi [p+1…li],  

(0 ≤ p ≤ li) 

� Deletion is an operation that removes a series of k tokens from 
position p.  

Delete(k, p): Vi →  Vi [1…p-1] ^ Vi [p+k…li], 

(1 ≤ p ≤ li , p < p+k ≤ li +1) 

� Movement is an operation that moves a series of k tokens from 
position p to position q.  

 

� Replacement is defined as a combination of insertion and 
deletion operation, in the way that the insertion operation of n 
new tokens immediately follows the deletion operation of k 
tokens at position p.  

Replace(k, tnew, p): Delete(k, p); Insert(Tnew, p),  
where Tnew = [t’1, t’2, …, t’n] 

3.2.2 Basic Differencing Algorithm 
The basic token differencing algorithm is based on the text 
matching algorithm used by WikiTrust [1], which is in turn a 

Move(k, p, q):     Vi → Vi [1…q-1] ^ Vi [p…p+k-1] ^  

Vi [q…p-1] ^ Vi [p+k…li],  
when 1 ≤ q < p < p+k ≤ li +1 ; 

Vi → Vi [1…p-1] ^ Vi [p+k…q] ^  

Vi [p…p+k-1] ^ Vi [q+1…li],  
when 1 ≤ p < p+k ≤ q ≤ li +1 

Table 1. Some basic wiki markup in MediaWiki 

Markup Meaning Occurrence 

[URI Text] External link Anywhere 

[[Text]] Internal link Anywhere 

[[File:name.jpg]] Image Anywhere 

{{Text}} Template Anywhere 

'''Text''' Bold Anywhere 

''Text'' Italic Anywhere 

<ref>Text</ref> Reference Anywhere 

* Text Unordered list item Beginning of line 

# Text Ordered list item Beginning of line 

---- Horizontal Line Beginning of line 

== Text == Title (2nd level) Beginning of line 

=== Text === Title (3rd level) Beginning of line 

 



variation of a greedy matching algorithm ([3], [17]). The basic 
idea of the differencing method is to match the old version’s 
chunks of sentences or tokens in the new version, and to label 
unmatched old version chunks as deleted and unmatched new 
version chunks as added. 

The first step of differencing is matching. First, the chunks 
(sentences or tokens) in the new version are indexed and placed 
into a hash table. Then the old version is scanned from beginning 
to end. For each chunk (containing one or more sentences or 
tokens), find occurrences in the new version. If such a chunk is 
found in the new version, advance the cursor position in the old 
version and new version simultaneously, and match the chunks 
until no more matches can be found. Matched positions are stored 
into a maximum heap, ordered by length of the match. 

After the entire old version has been scanned through, matches 
are removed one by one from the heap and recorded. Using a 
maximum heap can guarantee that the longest possible matches 
are found first, while short matches contained within can be 
ignored. 

After matching is finished, unmatched portions can be processed. 
The process of handling unmatched sentences is different from 
that of unmatched tokens. Unmatched sentences are concatenated 
and passed to the same matching algorithm, to conduct token 
level differencing. Unmatched token handling is discussed in the 
next section. 

3.2.3 Token Differencing 
Unmatched tokens appearing only in the old version can be 
marked as deleted, and unmatched tokens appearing only in the 
new version can be marked as inserted. Replacement can be 
marked as deletion and insertion at the same position. This can be 
discovered by checking previous matched chunk and next 
matched chunk of each deletion and insertion, to see if they are 
the same matched chunk or not. 

3.2.4 Sentence Differencing 
For each sentence in the old version, a matching rate is computed 
against every sentence in the new version. If we denote: 

• The number of tokens in the ith sentence of old version as loi ,  

• The number of tokens in the jth sentence of new version as lnj,  

• The number of common tokens between the above two 
sentences as lci,j,  

• The matching rate between the above two sentences as mi,j 

Then the matching rate can be calculated by the formula below 

mi,j = 2 × lci,j / (loi + lnj) 

Since the number of common tokens will never exceed the two 
numbers of tokens in both sentences, the upper bound of matching 
rate is 100%, which happens when two sentences are identical. 
The lower bound is 0%, which happens when two sentences have 
no common tokens. If the matching rate is greater than a certain 
threshold, the two sentences are considered approximately 
matched, which means the sentence in the new version is based on 
the sentence in the old version. We currently have set the sentence 
matching threshold to 40%. This value was determined 
empirically through several experiments on Simple English 
Wikipedia data, and can be changed as needed. 

If the text revision contains sentence merging (combining two or 
more sentences into one new sentence) or splitting (separating one 

sentence into two or more sentences), only calculating a matching 
rate against a single sentence may not reflect the edit situation 
very well. However, this occurs quite frequently in edited text. 
For example, the old version may contain these two consecutive 
sentences: “Apple is a fruit. It usually has red skin.” It could be 
merged in the new version like: “Apple is a fruit that usually has 
red skin.” In order to detect these cases, we attempt to combine 
consecutive sentences in the old version, and see if there is any 
improvement in the matching rate: 
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If the matching rate increases, the two sentences in the old version 
are marked as merged into one sentence in the new version. In the 
case of the above example we would find that neither of the two 
sentences in the old version taken individually match the merged 
sentence in the new version very well (53% and 50%, 
respectively), but when merging these two sentences from the old 
version the matching rate increases significantly (to 76% in this 
example). The merging process can be repeated, trying to merge 
more sentences and to maximize the matching rate. The same 
method can be applied to sentences in the new version, the result 
of which reflects sentence split. 

A sentence with its maximum matching rate to other sentences 
lower than the defined threshold is considered as completely 
removed (if it is in the old version) or completely new (if it is in 
the new version). This decision is based on the finding in [13]: 
reporting them as completely new or removed is more close to 
human understanding. 

3.2.5 Movement Detection 
Conceptually, a matching chunk (of either sentences or tokens) 
whose relative order in the sequence of chunks has changed is 
considered a case of movement. We can check if there are 
movements of chunks by labeling each match with its ordinal 
position in the old version, then check if they are sorted or not in 
the new version. If it is not, label the match with the greatest 
position offset as moved, and remove it from the match set. 
Repeat the above process until no more inversion is found. All 
movements should be labeled at that time. 

In practice, we find that matches shorter or equal to three tokens 
are usually common word phrases. For instance in an article on 
“green tea” it is common for many occurrences of this phrase to 
appear. Displaced short matches are unlikely to be real moves but 
instead are more likely cases of deletion and insertion of the same 
word phrase that happen in different locations. Thus we only 
consider a displaced match as a move if it is longer than three 
tokens. 

3.3 Action Categorizer 
With differences of revisions on hand, we can do further analysis 
on those basic edit actions and try to discover and categorize 
higher level edit actions. A rule-based categorizer can be used to 
extract various such edit actions. Rules can be customized to 
better capture these high-level edit actions. Additional 
comparison or computation can be done following the rule-based 
categorizer to extract the detailed nature of the edit action. For 
example, we can calculate the character level edit distance of 
original and current text when a short phrase replacement is 
encountered (for instance when “haelth” is replaced with 



“health”), to find out if it is a spelling correction or a term 
replacement. 

3.3.1 Rule-based Categorization of Edit Action 
With a list of basic edit actions, we can further categorize them 
based on the type of action, type or content of tokens in the edit, 
or a combination of them. 

In the following paragraphs, we denote 

� a: Basic edit action (Insert, Delete, Replace, Move)  

� t: Token (Belongs to certain type such as markup tags, words, 
link content, etc.) 

� string(t): The string representation of t 

� type(t): The token type of t 

� distance(s1, s2): Character edit distance between s1 and s2 

� Told = Vold[p…p+k-1]: a shorthand notation that denotes either 
deleted token sequence in Delete(k, p), or replaced token 
sequence in Replace(k, tnew, p) 

With the symbols above, we can define rules about edit actions. 
Edits that match the rule are classified into the category the rule 
represents. 

Consider this simple example. The wiki markup contains the 
opening tag of a reference “<ref>”. If we encounter this tag in a 
chunk of newly inserted text we know that an instance of a 
reference was added. This edit, which on the level of basic edit 
actions is simply an Insert, can further be categorized as being of 
type Reference by following rule: 

a = Insert(Tnew, p) ∧ type(Tnew[1]) ∈ (ref-open) 

(which says the action is an Insert at position p and the first 
inserted token is an opening tag of a reference). 

The rule can examine both type and content of the token, and 
check every token in the edit. For example, an inter-language link 
addition can be defined as follows 

a = Insert(Tnew, p) ∧ ∃ ti ∈ Tnew, (type(ti) ∈ (intlink-prefix) ∧ 

string(ti) ∈ (InternationalPrefix)) 

where InternationalPrefix = {ar, de, en, …} 

This rule checks each token in the inserted token sequence, 
checks if an internal link prefix token exists, and if it contains a 
language code that exists in the language list. 

A more complicated rule may depend on multiple basic edit 
actions. Here is a (simplified) definition of wikify, a high-level 
edit action which formats an article by surrounding existing text 
with wiki markup. 

a1 = Insert([tn1], p1) ∧ a2 = Insert([tn2], p2) ∧ p1 <  p2 ∧ ( 

(type(tn1) ∈ (bold-open) ∧ type(tn2) ∈ (bold-close))  

∨ (type(tn1) ∈ (italic- open) ∧ type(tn2) ∈ (italic- close))  

∨ (type(tn1) ∈ (intlink- open) ∧ type(tn2) ∈ (intlink- close))  

∨ (type(tn1) ∈ (extlink- open) ∧ type(tn2) ∈ (extlink- close))  

This rule recognizes a pair of markup tags inserted in the existing 
text, and checks if the pair is of the same markup type. 

3.3.2 Additional Comparisons 
After an edit action is categorized, we can apply additional 
comparisons to find out more detail about the edit. For example, a 
replacement of pure word tokens (i.e. no markup tags) can be 

further examined by calculating the character edit distance 
between them. 

a = Replace(k, Tnew, p)  

∧ ∀ ti ∈ Told, type(ti) ∈ (word) 

∧ ∀ ti ∈ Tnew, type(ti) ∈ (word)  

∧ distance(string(Told), string(Tnew)) < 3 

The character edit distance used is the Levenshtein distance [11], 
which is the minimum number of character edits required to 
transform one word into another. If this distance is smaller than a 
certain threshold, for example 3 as in the above example, then the 
edit can be categorized as a spelling correction. 

3.4 History Summarizer 
After all the individual edits have been categorized, we can 
summarize the list of edits. This step includes grouping categories 
of edits into more abstract groups, such as copy edit, rule 
enforcement, content addition, etc., and then counting the number 
of changes and their proportion in the edit for each group. Other 
statistics that are useful for the user or other applications can also 
be calculated in this step. 

In particular, we are interested in the calculation of edit 
significance. A calculation method of edit significance can be 
based on a weighted sum formula. In the previous step, some edit 
actions were classified into categories of high-level edit actions, 
whereas others do not belong to any such category. Table 2 shows 
some examples of edit actions and content categories. 

Every edit performed is categorized at the highest possible level 
and only appears once in the list of edits. That is, if an edit action 
is classified as a certain basic edit action and later as a high-level 
edit action, it is only listed as the high-level edit action and not as 
the basic edit action. For instance, an edit may be categorized as 
the Replacement basic edit action, whereas this same edit is later 
recognized to be a Spelling Correction. In this case it is only 
listed as the latter edit action and not the former. This is in order 
to avoid repeated occurrence of the same edit. 

Once all edits have been categorized to the highest possible level, 
edit significance can be calculated, according to following 
weighted sum formula: 
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Table 2. Some edit actions and edit categories 

Edit Action Content Category 

(Basic) 

Insertion 
Deletion 
Replacement 
Movement 

(High Level) 

Spelling correction 
Remove ambiguity 
Layout change 
… 

Editorial Template 
Info Template 
Table 
Wiki Markup 
Reference 
Image 
Inter-language Link 
Category  
Body Text 
… 

 



where 

• wx,i – weight of content category i on edit action x. (wx,i ≥ 0) 

• cx,i – edited content scale of content category i on edit action 
x. (cx,i ≥ 0) 

In certain categories, such as body text, the length of the edited 
text is relevant to the edit significance, whereas in other 
categories, such as reference, the length is irrelevant but the 
number of occurrences is. Therefore, cx,i can either represent 
length or number of occurrences, depending on the category. 
Since both wx,i  and cx,i are unbounded, the significance value has 
the range [0, ∞).  

Weights need to be subjectively assigned according to perceived 
relative significance of different edit actions and different content 
categories. We expect that a wiki user community, including its 
active contributors, would collectively determine these weights to 
match the group’s perception of value. Thus unless standard 
weights are used, a significance measure is not portable across 
different communities. 

4. PROTOTYPE IMPLEMENTATION 
We have implemented a prototype of our analyzer in the Java 
programming language. It takes two pieces of text as input and 
produces a list of categorized edits as output. The analyzer is 
designed to work on MediaWiki texts. Currently our prototype 
can process the first three steps of our analyzer, while the history 
summarizer is still under development. 

In addition, we have developed a MediaWiki extension in PHP. 
This extension extracts two versions of an article from the wiki 
database, calls the above Java program to analyze the revision 
process, and formats the output to show the differences between 
versions, categorized by the analyzer. An “edit analysis” tab is 
added on top of every article in the main namespace (i.e. 
excluding talk and other pages), which links to the analyzer when 
clicked. Figure 3 shows an example of the edit analysis page. 

To demonstrate our prototype analyzer and MediaWiki extension, 
we installed them on a MediaWiki server using a database dump 
of the Simple English Wikipedia2. For experimenting with our 
analyzer on the server, we chose several articles and performed an 
edit analysis on them. Following is the demonstration of our edit 
analyzer. 

                                                                 
2 31st December 2009 database dump, with 57,448 articles. 

4.1 Differencing 
We compare our difference engine output with the one used in 
MediaWiki. As discussed in Section 2.1, the longest common 
subsequence (LCS) based algorithms cannot recognize content 
movements. We also have shown that paragraph-word level 
differencing used by MediaWiki may produce hard-to-read 
difference statement. By using a greedy block matching 
algorithm, and sentence-token level differencing, we expect our 
algorithm to produce better difference statements in terms of 
intuitiveness, i.e. in close agreement with what a human evaluator 
would determine. 

Testing both algorithms through several example articles shows 
that our algorithm meets our expectations. To illustrate this, we 
tested the differencing on a pair of consecutive versions of the 
article “Film noir” 3 . MediaWiki shows that there are two 
paragraphs changed and one new paragraph added (Figure 4), 
while our algorithm shows there is a sentence moved, a new 
sentence added, a sentence changed, and a sentence expanded to 
two sentences in the new version (Figure 5), which appears to 
reflect the actual edit situation more closely. In particular, 
because of MediaWiki’s paragraph-level differencing, two 
sentences in the first paragraph are incorrectly marked as deleted, 
then added into the same relative position. Sentence level 
differencing avoids this situation, ignoring the boundary between 
paragraphs. 

4.2 Edit Action Categorization 
We have defined several categorization rules in our prototype 
action categorizer. The rules are some frequent edit actions in 
Wikipedia, such as wikify, inter-language link addition, category 
modification, reference addition, content modification, spelling 
correction, etc. Our tests applied the categorizer to several articles 
in the Simple English Wikipedia. Results show that all defined 
edit actions can be correctly categorized. Take two versions of the 
article “Tropical Storm Barry (2007)” 4 as an example (Figure 6). 
Categorized edits showed that two pieces of text were wikified, 
one word with its markup removed, two numbers were substituted 
with the spelled-out variant, a piece of text was added and a piece 
of text was removed. The derived edit list appears as follows: 

Wikify Ins([[[miles per hour|], 206); Ins([]] ], 212); 

Wikify Ins([[[wiktionary: wildfire|], 425); Ins([]]], 
430); 

Dewikify Del([[[], 352); Del([]]], 354); 

ContentSubstitution Repl([3 ], 291, [three ], 298); 

ContentSubstitution Repl([2 ], 378, [two ], 383); 

ContentRemoval Del([quickly forming ], 125); 

ContentAddition Ins([that formed quickly], 129); 

Note the first two and the last edit which each involved two 
spatially separated chunks, the first containing a starting tag and 
the second the matching closing tag. This text matching and 
categorization goes far beyond the ability of MediaWiki and other 
text differencing applications which do not consider the type of 
the text analyzed and thus only look at words in contiguous 

                                                                 
3
http://simple.wikipedia.org/wiki/index.php?title=

Film+noir&diff=296841&oldid=prev 
4
http://simple.wikipedia.org/w/index.php?title=Tro

pical_Storm_Barry_%282007%29&diff=next&oldid=134

1489 

 

Figure 3. Edit analysis tab extension in MediaWiki 



chunks, not as separated pairs such as matching opening/closing 
tags. Again, the result obtained closely matches a human 
evaluation of the revisions performed. Defining a comprehensive 
set of categorizing rules is still a work in progress. We will 
perform more testing on various articles once this definition is 
finished. 

Whereas we have not yet performed any formal performance 
evaluation, running the text differencing and edit categorization 
for pairs of revisions from the Simple English Wikipedia on a 

standard desktop PC results in acceptable performance in the 
range of 0.1 to 2 seconds, depending on the size of the revisions 
and the amount of changes. For a medium-sized production server 
it would be desirable to hook the edit categorization to the page 
save event, thus creating (and saving in the database) edit lists on 
an ongoing basis. Moreover, it may also be desirable for this to 
run on a separate analysis server machine rather than the main 
wiki server machine to prevent an adverse performance impact on 
wiki users. 

 

Figure 4. Difference page of article “Film noir” produced by MediaWiki analyzer (background colours: yellow/green – old/new 

version paragraph changed, gray – paragraph unchanged; text colour: red – word changed (deleted, inserted)) 

 

 

Figure 5. Difference page of article “Film noir” produced by our edit history analyzer (background colours: yellow – sentence 

changed, blue – sentence moved, green – sentence added; text colours: red – word deleted; blue – word moved, green – word 

inserted) 



5. PRELIMINARY EVALUATION 
To evaluate the effectiveness of our prototype system we 
conducted a small scale evaluation. Ten human evaluators were 
given a pair of consecutive revisions for each of two Simple 
English Wikipedia articles, and were asked to manually compare 
them and point out the changes between them. After the 
completion of this task they were presented with the edit list 
corresponding to these pairs of revisions as produced by our 
program and asked to indicate whether they agreed or disagreed 
with our program’s interpretation of what had changed in the 
articles. If they disagreed they could state a reason why they 
thought they disagreed. 

Ten articles were selected from the same Simple English 
Wikipedia database mentioned in the previous section. The 
articles were selected based on the length of their latest revision, 
with lower and upper thresholds of 2000 and 41000 characters, 
respectively, and about equal intervals on a quadratic distribution 
within this range. For each chosen article, we selected the most 
recent pair of consecutive revisions for which our program output 
the longest edit list below an upper limit of 20 edits (to make the 
human review task reasonably short). The 10 chosen revisions 
contained 2 to 18 edits. 

We invited 10 student volunteers to participate in the evaluation. 
They were about equally distributed in terms of gender (6 male, 4 
female), technical background (4 from computing science majors, 
6 from business or humanities majors), and education level (5 
undergraduates, 5 postgraduates). Each of them was given two 
articles to review, a shorter and a longer one. As we had selected 
10 articles, each one was evaluated twice by two distinct 
evaluators. Printouts of both old and new revisions were presented 
to them (end-user view, not source wiki text). Identical 
paragraphs in old and new revision had been removed from the 
article before it was presented, to reduce evaluators’ workload. 
We then asked them to mark and categorize changes between the 
two revisions manually. After they finished marking, the edit list 
generated by our prototype was presented to the evaluators. For 
each item in the list, we asked them if they agreed with the 
machine categorization or not, and to state the reason of 

disagreement if any. The whole process took about 30 minutes for 
each evaluator. 

The result of the evaluation shows that our prototype system can 
produce edit histories that are largely in agreement with human 
interpretation of changes. 11 out of 20 evaluations agreed 100% 
to our edit list, and the remaining 9 evaluations ranged from 
33.3% to 88.9% agreement. Overall the average agreement rate 
from all 2 x 10 evaluations was 84.1%. No significant differences 
were found between the different evaluator groups (male/female, 
technical/non-technical, undergraduate/postgraduate). The low 
agreements (33.3% in the case of the article “Nuclear physics”) 
were due to an expectation on the part of the evaluators regarding 
how a change should be interpreted, specifically expecting our 
program to be more or less as “clever” as themselves. To illustrate 
this: in the old revision of this article the sentence fragment 
“electrons quickly go around the nucleus” became “electrons 
move around the nucleus very quickly” in the new revision 
(changed parts underlined). One evaluator expected that replacing 
the word “go” with “move” and moving the word “quickly” to the 
end should be considered as a single edit, as these two changes 
taken together preserve the sentence’s meaning. The insertion of 
the word “very”, on the other hand, could be considered a 
separate edit. However, as our program tries to identify the 
longest sequence of words in a single edit, and has no 
understanding of the grammar of the underlying language (here 
English), it considers “quickly go” as one sequence in the old 
revision, and “very quickly” as one sequence in the new revision. 
This particular example led us to add another rule to our 
differencing algorithm: if the move of a sequence of tokens takes 
place within a sentence, it will be considered a move regardless of 
the length of the token sequence (unlike moves crossing sentence 
boundaries for which a threshold applies, in our case a minimum 
length of four tokens). 

Through this evaluation we collected valuable feedback that we 
are using to make further adjustments to our prototype. The 
results, however, confirm to us that our edit lists are on the whole 
close to how human evaluators interpret changes in the text. 

 

Figure 6. Difference page of article “Tropical Storm Barry (2007)” produced by our edit history analyzer 



6. CONCLUSIONS AND FUTURE WORK 
Research in text differencing algorithms goes back many years. 
However, when edits are non-trivial, text difference statements 
produced by these algorithms for a pair of texts can indicate larger 
and more complicated changes than a human evaluation of those 
texts would produce. In this paper we have proposed a new text 
differencing and edit categorization method. By adding a 
tokenizing step and some tweaks to existing differencing 
algorithms, we can produce a difference statement closer to 
human evaluation. This difference statement can be used to 
classify edit actions into categories, and generate summary 
statements about the edit. Moreover, our algorithm and method 
are largely language-independent, and are applicable to any 
alphabet-based language that uses common sentence-ending 
tokens (full stop, exclamation mark, question mark etc.) and 
whitespace to separate words. This mainly excludes East Asian 
languages (Chinese, Japanese, Korean) and possibly some others. 

Our preliminary evaluation on articles from the Simple English 
Wikipedia shows that our method can produce a better difference 
statement compared with the MediaWiki differencing engine, and 
correctly classify each edit into its appropriate category. We see 
the potential for our method to be applied to a broad range of 
problems, including automatic summarization, edit classification, 
edit significance calculation, author contribution calculation, and 
author interest classification. Using our edit history analyzer to 
scan through the entire Wikipedia database, interesting 
observations of user edit patterns could be obtained. 

At the time of writing, our history summarizer and edit 
significance calculation are not fully yet implemented. Upon full 
implementation we are planning to use categorized edit actions as 
the basis to refine the edit significance calculation. We will seek 
feedback from the wiki community to determine suitable weights 
to be used in our proposed formula, and then perform a 
comprehensive evaluation on the articles of English Wikipedia. 

Our edit significance calculation model could also be applied to 
our previous work on co-authorship degree calculation [16]. That 
work only made a very simple determination of edit significance. 
Using our new edit significance calculation model will allow a 
more accurate result to be obtained. 

Finally, we plan to release our program code as open source in the 
near future. 
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