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ABSTRACT
User generated content (UGC) constitutes a significant frac-
tion of the Web. However, some wiiki–based sites, such as
Wikipedia, are so popular that they have become a favorite
target of spammers and other vandals. In such popular sites,
human vigilance is not enough to combat vandalism, and
tools that detect possible vandalism and poor-quality con-
tributions become a necessity. The application of machine
learning techniques holds promise for developing efficient on-
line algorithms for better tools to assist users in vandalism
detection. We describe an efficient and accurate classifier
that performs vandalism detection in UGC sites. We show
the results of our classifier in the PAN Wikipedia dataset.
We explore the effectiveness of a combination of 66 indi-
vidual features that produce an AUC of 0.9553 on a test
dataset – the best result to our knowledge. Using Lasso op-
timization we then reduce our feature–rich model to a much
smaller and more efficient model of 28 features that performs
almost as well – the drop in AUC being only 0.005. We de-
scribe how this approach can be generalized to other user
generated content systems and describe several applications
of this classifier to help users identify potential vandalism.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
Wiki technology enabled the emergence of Web sites whose

content relies entirely on users’ contributions. Such content
is usually called User Generated Content (UGC). Wikipedia
is one example of such a Web site, and the flagship of UGC.
Within UGC systems, vandalism is a well-known problem:
individuals sometimes delete or distort the information with
malicious intentions; commercial entities sometimes use the
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popularity of these sites to sell or advertise their products
in text disguised as UGC; etc. These various forms of van-
dalism can occur in many ways with many different mo-
tivations. User vigilance can revert vandalism, to some ex-
tent, but vandalism can be both massive and subtle, making
manual detection a difficult task. Tools that can effectively
detect possible vandalism and alert users are important for
maintaining value and trust in a UGC resource. These tools
serve as a force multiplier making the efforts of individuals
who work to maintain UGC more efficient and effective as
they focus their energy in places where vandalism is highly
likely and subtle.

In this work we describe a low–cost and highly accurate
vandalism detection model which makes it practical for real–
time applications. While our more general focus is UGC,
we develop the model based on a Wikipedia corpus from
the “Uncovering Plagiarism, Authorship, and Social Soft-
ware Misuse (PAN)”workshop. This workshop has been de-
veloping corpora and testing algorithms head–to–head since
2007 and thus provides data and benchmarks for compar-
ing our results. By aggregating several features used in the
PAN competition and identifying a number of new features,
we train a classifier that performs better than most prior re-
sults in the PAN competition. Further, we try to compress
the model by eliminating redundant features. We do this
by estimating the contribution of features to the vandalism
detection model based on a MapReduce paradigm, which
makes our approach both efficient and scalable. While our
specific example is from Wikipedia, the most significant fea-
tures from the model can be more generally applied to many
forms of UGC.

This paper is structured in the following way. We begin
with a review of the relevant work on vandalism mitigation
from both a user and a technical perspective. Through this
we identify a number of persistent challenges for users as
well as sets of features that are commonly used to develop
technical solutions for vandalism detection. In subsequent
sections we elaborate a relevant set of features, use those
features to develop a machine classifier that is effective at
predicting vandalism. We then apply the Lasso technique
to reduce the number of features to a minimum set that
achieves high classification performance. In concluding, we
argue that the minimum set of features are more generally
applicable to UGC systems, and describe some approaches
for applying the resulting classifier to help users identify
possible vandalism.
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2. BACKGROUND
Vandalism detection has been a concern for Wikipedia

since its inception. Vandalism in Wikipedia is defined as any
addition, removal, or change of content in a deliberate at-
tempt to compromise the integrity of Wikipedia. According
to this broad definition, vandalism can include spamming,
lobbying and destroying the edits of others. Wikipedia relies
mostly on its human editors and administrators to fight van-
dalism. But the scale of Wikipedia makes locating all van-
dalism very time consuming. Tools such as Vandal Fighter,
Huggle, and Twinkle are used to monitor recent changes in
articles and revert changes deemed vandalism [7]. In the fol-
lowing we describe two broad approaches to vandal fighting,
the user approach with relies mostly on tools to assist user
detection and the more automated approaches that gener-
ally rely on bot or other algorithms.

Viegas et. al. [20] conducted some early work on the types
of vandalism found in Wikipeida. They used a visualization
technique called “history flow” to see the various ways pages
were edited and changed over time. In considering these
changes they identified five types of vandalism: Mass Dele-
tion, Offensive Copy, Phony Copy, Phony Redirection, and
Idiosyncratic Copy. They also analyzed the time for repair of
vandalism, which they termed “survival time”. They found
that the median survival time for some vandalism is quite
short, on the order of minutes. However, they noted that the
mean time is skewed long, on the order of days or weeks, de-
pending on the type of vandalism. This means there is some
vandalism that goes undetected for long periods of time.

In followup work, Priedhorsky et. al. [15], considered the
impact of a piece of vandalism. That is, if some vandalism
lasts on a site for days, how likely is it that a user might
stumble across that and be misinformed or otherwise get
a wrong impression about the quality of the entire content
based on a vandalized page. They developed a model based
on page viewing behaviors and vandalism persistence. Their
model correlates closely with the empirical results from Vie-
gas et. al. [20] and further illustrates that about 11% of
vandalism would last beyond 100 page views, with a small
fraction of a percent lasting beyond 1000 page views. Fur-
ther, Priedhorsky et. al. [15] also considered the types of
vandalism and how likely users were to agree on the types of
vandalism. They began with the vandalism types from [20]
with some small refinements and identified two additional
types: Misinformation, and Partial Delete. They identi-
fied the most frequent categories of vandalism as Nonsense
(Phony Copy) 53%, Offensive 28%, Misinformation 20% and
Partial Delete 14%. However, they also noted that the rate
of agreement among their users for some categories is some-
what low with Misinformation having the lowest level of
agreement for these top four categories. This means that
some of the most subtle vandalism, in the form of Misinfor-
mation, is even hard for users to agree upon.

In recent work, Geiger & Ribes [7] studied the process of
editors who participate in Recent Changes Patrolling using
Huggle. Their study raises some interesting and relevant
issues about the work to remove vandalism and how it is
performed, illustrating how Wikipedians consider the activ-
ities of others. In the case of the decision to ban a vandal,
the effort is to understand whether the activities are inten-
tionally designed to corrupt content or wreak havoc on the
community itself. This work illustrates that there is a fair
amount of vandalism which is somewhat ‘routine’ but that

some is still difficult to detect even by people who are prac-
ticed at looking for vandalism. Another interesting insight is
that most tools that support vandalism rollback do not yet
categorize or provide a prediction rating for the edit being
viewed. Most tools simply show the edit, the prior version,
and the IP or username of the editor who made it.

The second approach relies on automated bot and algo-
rithms. Researchers have been very supportive of this ap-
proach, so we focus on the prior work that is related to how
we have also approached the problem. Since 2007 automated
bots have been widely used to fight vandalism in Wikipedia.
The most prominent of them are ClueBot and VoABotII.
Like many vandalism detection tools, they use lists of reg-
ular expressions and consult databases with blocked users
or IP addresses to keep legitimate edits free of vandalism.
The major drawback of these approaches is that most bots
utilize static lists of obscenities and grammatical rules that
are hard to maintain and, with some creativity, can be eas-
ily thwarted. A study on performance analysis of these bots
in Wikipedia shows that they can detect about 30% of the
instances of vandalism [16].

Several machine learning approaches have recently been
proposed that would improve vandalism detection [16, 14,
9, 5]. Comparing the performance of these approaches is
difficult because of several shortcomings in early vandal-
ism detection corpora. These early corpora were too small,
they failed to account for the true distribution of vandal-
ism among all edits, and the hand labeling of the examples
had not been double–checked by different annotators. These
shortcomings were resolved by the creation of a large–scale
corpus for the PAN 2010 competition consisting of a week’s
worth of Wikipedia edits (PAN–WVC–10) [13].

The PAN 2010 corpus is comprised of 32, 452 edits on
28, 468 different articles. It was annotated by 753 annotators
recruited from Amazon’s Mechanical Turk, who cast more
than 190, 000 votes so that each edit has been reviewed by at
least three of them. The annotator agreement was analyzed
in order to determine whether each edit is a regular edit or
vandalism, with 2, 391 deemed to be vandalism. The corpus
is split into a training set and a test set, which have 15, 000
and 18, 000 edits, respectively [11].

A survey of detecting approaches Potthast & Stein [11]
shows that about 50 features were used by the 12 differ-
ent teams. Features are categorized into two broad groups:
(1) edit textual features; (2) edit meta information features.
Edit textual features are extracted based on the text of the
edit. Some features in this category are adopted from pre-
vious work on spam detection in emails or blogs. For ex-
ample, “Longest character sequence” and “upper case to low
case char ratio”are known to be important features for spam
detection in emails [8]. The first winner of the PAN compe-
tition mainly used features in this category.

Edit meta information mainly contains two types of fea-
tures: user features and comment features. Most teams used
comment features, but only two teams extensively relied on
user features. User features are extracted based on the edit
patterns done by the user. Comment features are extracted
based on the comment related to an edit.

Traditional spam detection systems for emails and blogs
mainly rely mainly on textual features based on the content.
There is no notion of history logs in these UGC platforms.
However, in wikis we have history revisions which make them
a valuable source for feature extraction. Interestingly, two
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teams captured this difference and extracted some user fea-
tures based on the history revisions. This helped them place
second and third in the competition.

Other approaches rely more heavily on a model of user
reputation. Adler et.al. [1] used WikiTrust to estimate user
reputation. In their system, users gain reputation when their
edits are preserved and they lose reputation when their edits
are reverted or undone [2].

In our previous work, we used user reputation features
based on a reputation management system we developed
[10]. Compared to [2], our model is simpler and more ef-
ficient. One reason is that our model is only based on the
stability of inserts. In [2], stability of deletes and reverts are
also considered. A detailed comparison between these two
approaches is presented in [10].

Potthast et.al. [11] combined the predictions submitted
by the top eight teams and developed a meta classifier based
on the predictions. To learn the meta classifier, they used
random forest. This improved the classification performance
(ROC–AUC) of the top team significantly, from 0.91580 to
0.9569. Using a similar approach, Adler et.al [17] developed
a meta classifier based on the predictions of three different
classifiers. To evaluate the meta classifier, they merged train
set and test set and reported ROC–AUC based on 10–fold
cross validation. Hence, their results are not comparable
with PAN competition results and our results.

In general, meta classifiers work at a macro level by ag-
gregating results from different classifiers. In addition, this
makes them even more complex and less practical for real–
time applications. In contrast, in this study we work at the
level of individual features and focus on building accurate
classifiers with minimum set of features. We show that the
classification performance of the compact classifier is com-
parable to the meta classifier developed in [11].

3. FEATURE EXTRACTION
To extract features, we mine the entire English Wikipedia

history dump, released on Jan, 2010. Totally, 41 edits in
PAN corpus are missing in the dump. We use crawler4j1 to
extract the data of these missing edits. We also use other
Wikipedia SQL dumps to extract users with special access
rights such as administrators and bureaucrats.

Using all this data, we extract 66 features. This feature
set includes most of the features used in the PAN competi-
tion by different teams [11]. In addition, we introduce some
new features. Table 1 shows the features along with their
definitions (each row may represent more than one feature).

Similar to [11] we separate edit textual features and edit
meta data features. Since the edit meta data features con-
tains both user and comment features, we consider them
as different groups. In addition, we add language model
features as a new group. These features capture topical rel-
evance and are estimated based on the language model of
the newly submitted revision and the background. The ef-
fectiveness of using these features for vandalism detection
has been studied in [5, 12]. We categorize the features into
four groups (see Table 1):

• User Features: In this work we introduce 12 fea-
tures for each user including statistical and aggregate
features. We calculate these features by mining his-
tory revisions up to time T [10]. For the purpose of

1http://code.google.com/p/crawler4j/

this study, we consider T as 2009–11–18 which is the
timestamp of the earliest edit log in the PAN corpus.
Hence, all features in this category are based solely on
history data.

• Textual Features: we have 30 features in this cate-
gory. Most of the features in the category are adopted
from [19]. We calculate the value of the features based
on the inserted content. In addition, in this work, we
calculate the value of the features also based on the
deleted content. To distinguish these features we use
“Ins” and “Del” prefix throughout this paper. For ex-
ample, Vulgarism shows the frequency of vulgar words.
We expect insertion of vulgar words to be a signal
for vandalism. Conversely, we expect deletion of such
words to be a signal for legitimate edits aiming at re-
moving vandalism.

• Meta Data Features: we have 22 features in this
category. Most features are extracted from the com-
ments associated with the edits. For example, we have
similar textual features to the previous category but
here we extract them based on the comment. Because
the descriptions are similar to their peer textual fea-
tures, we do not define them in Table 1. These features
are specified by ∗.

In addition to these, we introduce some new features
that we extract from the automatic comments gener-
ated by Wikipedia. These comments specify which
section of the article has been edited. We extract uni-
gram, bigrams, and trigrams from these types of com-
ments. We use feature selection on the PAN train set
to extract the important ones. For example, the short
time interval between the old and the new revisions
might be an indicator of vandalism.

• Language Model Features:
In this category we have 3 features which calculate
the Kullback–Leibler distance (KLD) between two un-
igram language models. We calculate KLD between
the previous and the new revision [5]. We introduce
two more features: the KLD between the inserted con-
tent and the previous revision. Similarly, we calculate
the KLD between the deleted content and the previ-
ous revision. We suspect that, sometimes vandalism
comes with some unexpected words so we expect to
see sharp changes in the distance. Conversely, delet-
ing unexpected words can be an indicator of legitimate
edits.

4. LEARNING VANDALISM DETECTION
MODEL

We consider vandalism detection as a binary classification
problem. We map each edit in PAN corpus into a feature
vector and learn the labels by mapping feature vectors onto
{0,1}, where 0 denotes legitimate edit, and 1 vandalistic
edit. To learn a classifier and tune its free parameters, we
use the PAN train set and leave the test set untouched for
final evaluation.

Statistical analysis of Wikipedia edits show that roughly
7% of edits are vandalistic [10], which is consistent with the
vandalism ratio in the PAN corpus. Given this, we need to
use machine learning algorithms that are robust enough to
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Table 1: List of features. Asterisked features are extracted based on both the edit content and its comment.

Feature Description

DSR, DDSR, Rep Aggregated features representing a user’s reputation

Ins Words Total number of words inserted by a user

Del Words Total number of words deleted by a user

Lost Words Total number of deleted words from a user

Ins Revision Total number of revisions a user has done insertion in

Del Revision Total number of revisions a user has done deletion in

Ins Page Total number of pages a user has done insertion in

Del Page Total number of pages a user has done deletion in

User Type User has some special rights, such an admin, a bot, or a bureaucrat

User Page User has a user page in Wikipedia

Ins Size Number of inserted words

Del Size Number of deleted words

Revision Size Size difference ratio between the old and the new revision.

Blanking The whole article has been deleted

Internal Links Number of links added to Wikipedia articles

External Links Number of added external links

Word Repetitions Length of the longest word

Char Repetitions Length of the longest repeated char sequence

Compressibility Compression rate of the edit differences.

Capitalization∗ Ratio of upper case chars to lower case chars

Capitalization All∗ Ratio of upper case chars to all chars

Digits∗ Ratio of digits to all letters

Special Chars∗ Ratio of non-alphanumeric chars to all chars

Diversity∗ Length of all inserted lines to the (1 / number of different chars)

Inserted Words∗ Average term frequency of inserted words

Vulgarism∗ Frequency of vulgar words

Bias∗ Frequency (impact) of biased words

Sex∗ Frequency (impact) of sex related words

Spam∗ Frequency (impact) of spam related words

Pronouns∗ Frequency (impact) of personal pronouns

WP∗ Frequency (impact) of mark up related words

Special Words∗ Aggregation of vulgarism, bias, sex, spam, pronouns, and WP ratios

Time Diff Time interval between the submission of the old and the new revision

Category If the automatic comment contains “category”

Early Years If the automatic comment contains “early years”

Copyedit If the automatic comment contains “copyedit”

Personal Life If the automatic comment contains “personal life”

Revert If the automatic comment contains “revert”

Revision Ordinal Ordinal of the submitted revision

Length Length of the comment

Reverted if the MD5 digest of new revisions is the

same as one of the old ones in window size of 10

KL Distance Kullback–Leibler distance between the old revision and the new revision

KL Distance Ins Kullback–Leibler distance between the inserted words and the new revision

KL Distance Del Kullback–Leibler distance between the deleted words and the new revision
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handle class imbalance problems. In addition, we need to use
an evaluation metric that is insensitive to imbalanced data.
Similar to the evaluation metric used for PAN competition,
we use AUC, area under the ROC curve.

We use different binary classification algorithms such as
Logistic Regression, Naive Bayes, and Random Forest [3].
In all of our experiments, random forest results in the best
classification performance. Random forests are known to
be tolerant to imbalanced datasets. In addition, they are a
suitable option for the datasets with missing data [3]. The
PAN data set is an imbalanced dataset and for some fea-
tures, like user group features have the problem of missing
data. For 4% of users we do not have any information. Thus,
in this paper we report the results based on random forest
classifiers.

To learn a random forest classifier, we need to tune two
free parameters: the number of trees in the model and the
number of features selected to split each node. Our exper-
iments show that classification performance is sensitive to
the former but not to the latter. This result is consistent
with Breiman’s observation [3] on the insensitivity of ran-
dom forests to the number of features selected in each split.

To tune the number of trees, we partition the train set into
three folds and use 3–fold cross validation. Using three folds
allows us to keep a relatively decent number of vandalized
cases in each training sets (around 600). To find the optimal
value for the number of trees, we need to sweep a large range
of numbers. Hence, we need to design an efficient process
for this purpose.

For each fold, we create a pool of N = 10, 000 trees, each
trained on a random sample of the training data in that
fold. Then we use this pool for creating random forests of
different sizes. For example, to create a random forest with
20 trees, we randomly select 20 trees from this pool of N
trees. However, since this random selection can be done
in C(N, 20) different ways, each combination may result in
a different AUC. We repeat the random selection of trees
r = 50 times and we report the mean and variance of the
F × r results (where F is the number of folds).

The advantage of this approach is that we can calculate
the mean and variance of AUC very efficiently for forests
with different sizes without the need to train a huge number
of trees independently. Otherwise, to report the mean and
variance of AUC for random forests of size k = 1 to T , we
would need to train r+2×r+3×r+...+T×r = r∗T (T+1)/2
trees for each fold, which is 108 trees. Using this approach
we only need to train N trees per fold (in our experiments
we used N = 5× T ).

Figure 1 shows the mean of AUC as a function of num-
ber of trees in the model. As more trees are added to the
model, mean of AUC increases and the variance decreases.
The mean of AUC does not improve significantly after hav-
ing 500 trees in the forest but the variance keeps decreasing.
It should be emphasized that models with smaller variance
are more stable and therefore more predictable in test envi-
ronments. Although more trees may result in slightly higher
AUC values, we decide to set the number of trees as 1000
to have a balance between classification performance and
model complexity. More complex models with more trees
would require more time for prediction in real–time. Given
this, the AUC on the train set based on 3–fold cross valida-
tion is 0.9739± 0.0024. The AUC value on the PAN test set
is 0.9553.
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Figure 1: The effect of number of trees on AUC
mean and standard deviation

The result reported here is significantly higher than the
best AUC reported in the PAN competition, 0.9218 [11].

5. LOW–COST VANDALISM DETECTION
The classifier mentioned in the previous section makes its

decision based on 66 features in four different groups. How-
ever, computing and updating each of these features imposes
some off–line or run–time cost. For example, computing and
updating features in the user group requires the tracking of
all edits done by each individual. Maintaining a system that
updates data for computing these features would come at
some cost for the wiki. Some other features like textual fea-
tures are computed after submission of a new edit and the
vandalism detection system should be able to compute them
in real–time to decide whether it is legitimate or vandalistic.

In this section, we report the results of our experiments
in finding a minimum set of features whose classification
performance is like the one with 66 features. In other words,
we try to detect and eliminate redundant features. There are
two types of redundant features: (a) features that are not
informative and do not help in discriminating legitimate and
vandalistic content; (b) features correlated with some other
features so that once one of them is selected, adding others
does not bring any new discriminating power to the model.

In order to detect and eliminate redundant features, we
perform two sets of experiments. First, in Section 5.1 we
study the contribution of each group of features as a whole
unit to examine if any of the four groups can be eliminated
without a significant drop in AUC. Then in Section 5.2 we
study the contribution of each feature individually and use
the results for eliminating redundant features.

Given the number of experiments needed for this study, we
use the Amazon MapReduce cluster to run them in parallel.
In our implementation, each mapper receives specific con-
fig information and trains a classifier for that config. Then
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Table 2: The drop in mean AUC when we eliminate
a feature group. Results on train set are for 3–fold
cross validation.

Dropped Group Train set Test set

User −3.8% −6.6%

Textual −1.8% −1.5%

Meta data −0.4% −0.3%

Language Model −0.2% −0.3%

Table 3: The mean AUC when we only use features
in one group.

Selected Group Train set Test set

User 0.9399 0.9225

Textual 0.9001 0.8400

Meta data 0.7019 0.6924

LM 0.7271 0.6986

Baseline (all groups) 0.9739 0.9553

reducers aggregate the AUC results for different folds and
report the mean AUC for different configs.

5.1 Eliminating Groups of Features
For each group of features, we train a classifier without

the features of that group. This will show us the drop in
AUC when this group is ignored. Table 2 shows the results.
According to these results we can conclude that removing
features in the User group and the Textual group results in
a significant drop in AUC, while the drop for the Meta data
and the LM group is much less.

Based on these results we cannot infer that features in
the Meta data and LM group are not informative. The only
conclusion is that having both User and Textual features
in our feature set, adding Meta data and LM features do
not add significant new discriminating power to the model.
Interestingly, Table 3 supports this conclusion. When we
only use Meta data or LM features the AUC value is much
higher that the AUC of a random classifier (0.50). Another
interesting result is that when we only keep features of one
group, the User group results in the highest AUC (0.9399) .

The results of this study might not seem consistent with
what was reported in [17]. Here we show the importance
of user features, while in [17], authors have concluded that
there is much less need to care about the past performance of
the users and therefore that user features do not contribute
in any significant way to the classification performance. We
see two reasons for this difference. First, we calculate user
features based on different approaches; so our feature sets
are not the same. Secondly, the authors in [17] have used
meta classifiers to measure the contributions of groups of
features to the classification performance.

It is important to note that a meta classifier works at the
macro level. In other words, it sends the same test instance
to a set of classifiers and then aggregates their decisions (e.g,
using a weighted average). In many problems this approach
produces more accurate results [4] because now the final

decision is made based on the votes casted by a diverse set of
classifiers. However, training different classifiers on different
groups of features and then combining them with a meta
classifier, as suggested in [17], may not necessarily result in
an optimal classification performance. The reason for this is
that, by limiting each single classifier to a subset of features,
we may limit its expressiveness, thereby making it weaker.
A combination of such classifiers may only result in a sub–
optimal performance; but a classifier that has access to all
of the features in different groups, has the chance of making
its decision based on a combination of features in different
groups. For example, a decision tree based classifier may
grow branches in which both user reputation features and
textual features are used. Therefore, it can exploit all of the
useful information embedded in these features to enhance
the result.

5.2 Eliminating Individual Features
In Section 5.1 we showed that all the four groups have

some informative features. In this section, we attempt to
find the smallest feature set whose AUC is comparable to
the AUC of a classifier with 66 features. To this aim we do
feature selection.

Traditional feature selection algorithms like Information
Gain or Chi–Square evaluate features independently in or-
der to estimate their importance. However, we need an al-
gorithm that considers correlations between features and is
able to detect and eliminate redundant features effectively.
We use Lasso (Least Absolute Shrinkage and Selection Op-
erator) [18] for this purpose. Lasso fits a regularized regres-
sion model to features in such a way that the final model is
a sparse solution in the feature space. Thus, the weight of
redundant features in the final model would be zero. This
means that we can remove these features from the model
with no significant change in the classification performance.
We use the Logistic Regression Lasso implemented in R glm-
net package [6].

Lasso has a regularizer parameter, λ, that offers a tradeoff
between sparsity of the model and its classification perfor-
mance. Lower values for λ result in more relaxation of the
regularization constraint which allows more features to have
non–zero weights.

Table 4 shows a correlation between the selected features
and different values of λ. For λ = 0.0716, only one feature
is selected. This means that, according to Lasso, if we want
to decide the legitimacy of an edit based on only one fea-
ture, “Ins Special Words” would be our best choice. As we
decrease the value of λ, more features are selected according
to their importance. The second most important feature is
“DDSR”. The last column in Table 4 shows the value of the
AUC on the PAN test set for classifiers trained on the se-
lected features. As the number of selected features increases,
we see a higher value for AUC but the cost of computing and
updating the features would also increase.

We use 3–fold cross validation on the PAN train set to
pick the largest value for λ, where the drop in AUC is not
statistically significant. The result was λ = 0.0030 which
leads to selection of 28 features. Table 4 shows a list of the
selected features. The AUC for this feature set on the PAN
test set is 0.9505. This feature set only includes less than
half of the original features but the drop in AUC is only
0.005.
In this sparse feature set we have features from all groups.
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Table 4: Feature Selection using Lasso. Parameter λ determines a tradeoff between number of selected
features and AUC of the classifier. Smaller values of λ allow more features be selected and result in models
with higher performance.

λ Selected Features AUC on the PAN test set

0.0716 Ins Special Words 0.5974

0.0594 DDSR, Ins Special Words 0.8614

0.0373 DDSR, Rep, Ins Special Words 0.8965

0.0340 DDSR, Rep, User Page, Ins Digits, Ins Special Words 0.9074

0.0310 DDSR, Rep, User Page, Ins Digits, Ins Vulgarism, Ins Special Words 0.9090

0.0257 DDSR, User Page, KLDNew2OLD, Ins Digits, Ins Vulgarism, Ins Special Words 0.9197

...
...

...

DDSR, Del Words, User Type, User Page, Copyedit, Personal Life, Revision Ordinal,

Comment Length, KLDNew2OLD, Blanking, Ins Internal Link, Ins External Link,

0.0030 Longest Inserted Word, Ins Longest Character Sequence, Ins Compressibility, 0.9505

Ins Capitalization, Ins Digits, Ins Special Chars, Ins Vulgarism, Ins Bias, Ins Sex,

Ins Pronouns, Ins WP, Ins Special Words, Del Bias, Ins Digits, Comment Special Chars

Comment Spam

...
...

...

For example, “DDSR”, “Del Words”, “User Type”, and“User
Page” are selected from the user group. If we follow the
Lasso path, features get added and eliminated as λ de-
creases. For example, “Rep” is selected as the third im-
portant feature, but because of its correlation with other
selected features it is eliminated from the feature set later.
Interestingly, “Rep” is computationally more expensive than
“DDSR”.

We have 17 features from the Textual group. These fea-
tures are also widely used for spam detection in other do-
mains such as emails or blogs [8]. For example, “Ins Longest
Character Sequence” shows whether a user has inserted a
long sequence of the same character which can be a good
indicator of vandalism. There are also some textual features
which are unique to Wikipedia. For example, “Del bias”
shows that the user has deleted words which represent bias
and therefore is a good indicator of legitimate edit.

We have 6 features selected from the Meta data group. For
example, “Comment Length” or “Comment Special Chars”
are selected as important features. “Personal Life” is an-
other important feature. It shows whether the edit is made
in the “Personal Life” section of a biography article. We
have observed that this section of biography articles is more
often vandalized and therefore this feature can be an impor-
tant signal. This observation is consistent with Wikipedia
statistics which show a high vandalism ratio in biography ar-
ticles. Given that Wikipedia automatically adds the name
of an edited section to the comment associated to each edit,
we can extract this feature from comments.

The only feature that is selected from the Language Model
group is “KLDNew2OLD”. The goal of this feature is to de-
tect sharp linguistic distance between the new and the previ-
ous revision which can be an important signal for vandalism
detection.

6. DISCUSSION & CONCLUSION
In the preceding sections we have described an approach to

the important task of detecting vandalism in User Generated
Content (UGC) systems. Our specific example comes from
Wikipedia, but the technical approach can be applied more
generally to many forms of UGC.

Using a validated corpus of Wikipedia edits from the PAN
competition we developed binary classifiers using random
forests. Random forests are strong indicators of missing
and unbalanced data which is a common characteristic for
datasets from wikis and other forms of UGC. We compressed
the learning model using a Lasso statistical model shrinkage
technique. We found a smaller feature set, for which the
computing and classifying is inexpensive and thus very prac-
tical for the online/real–time application of the classifier.

In fact, it is through this smaller, compact set of features
that we claim a broader application to a wider range of UGC
systems. User reputation features in the form of DDSR and
special characters in the edit are some of the strongest fea-
tures and are easily detected in other UGC systems. The
usage of special characters has been widely practiced in spam
detection in emails or blog comments. DDSR measures the
survivability of the content contributed by users. This sur-
vivability is interpretable in other domains. For example, to
measure it in Twitter we can see how often and how fast a
tweet gets re–tweeted. Similarly, in Facebook, we can look
at patterns of sharing and propagation.

UGC systems can apply vandalism detection to help users
understand which content may be problematic. Colorizing
text is a common interface mechanism to indicate trust.
With our compact model, we know which features contribute
most to the prediction of vandalism and could colorize or an-
notate the content to indicate the strength of the prediction.

Another variant of this technique is to help end–users de-
tect and remove vandalism. Few user tools for vandalism
removal provide any suggestion or prediction of that is or

88



is not vandalism. This is not a complete oversight on the
part of the tool designers. Some of the predictive models
are difficult to maintain and the predictions cannot be com-
puted in real–time, as the tool loads a specific contribution.
The model that we develop could meet these requirements,
but admittedly, we have not tested this in an actual van-
dal fighting tool. Instead, we have left that for some future
work.

A third application of this technique is to use it as the
basis for an awareness tool or event notification tool. Most
wikis support some form of a watch list. When a user puts
a specific wiki page on her watch list she is indicating in-
terest in that page. When that page is edited or changed,
the system sends email to the user about the edit. This is
not a problem if a user is interested in a few pages, but if
she were interested in many pages this might result in an
unmanagable flood of email. An enhanced watch list mech-
anism could use our model and a user specified vandalism
threshold to control notifications. That is, for some pages, a
user might want to see every change (low vandalism thresh-
old), while for others she might want to see only changes
that cross a high threshold of predicted vandalism. This
would allow a user to monitor a much broader span of pages
while focusing her attention on pages or on activities that
are of more interest to her.

Vandalism detection is a difficult problem. Technical ap-
proaches like ours are making progress. However, some user
studies attempting to classify vandalism have illustrated that
even among users there are types of vandalism that are open
to interpretation [15, 20]. In future work we plan to ex-
plore the types of vandalism as a multi–label classification
problem. We have used Amazon Mechanical Turk to begin
re–labeling the PAN corpus using categories derived from
[15] and [20]. Our plan is to move beyond a standard bi-
nary classification (vandalism/legitimate) for each content
edit to explore where users agree or disagree on vandalism
and technical approaches that could help users understand
how and why content might, or might not be, vandalism.

Vandalism will continue to be a challenge for all types
of UGC systems. What constitutes vandalism will always
be something “in the eye of the beholder”. As such, the
community of users contributing to UGC systems will always
be the final arbiters of what should stay and what should
go. Tools based on models like ours need to be timely and
provide a clear and rational explanation for why a prediction
is being made, so that the user can make the best decision
possible with the information we provide.
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