
Design and Implementation of Wiki Content
Transformations and Refactorings

Hannes Dohrn
Friedrich-Alexander-University

Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen, Germany

+49 9131 85 27621
hannes.dohrn@fau.de

Dirk Riehle
Friedrich-Alexander-University

Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen, Germany

+49 9131 85 27621
dirk@riehle.org

ABSTRACT
The organic growth of wikis requires constant attention by
contributors who are willing to patrol the wiki and improve
its content structure. However, most wikis still only offer tex-
tual editing and even wikis which offer WYSIWYG editing
do not assist the user in restructuring the wiki. Therefore,
“gardening” a wiki is a tedious and error-prone task. One
of the main obstacles to assisted restructuring of wikis is the
underlying content model which prohibits automatic trans-
formations of the content. Most wikis use either a purely
textual representation of content or rely on the representa-
tional HTML format. To allow rigorous definitions of trans-
formations we use and extend a Wiki Object Model. With
the Wiki Object Model installed we present a catalog of trans-
formations and refactorings that helps users to easily and
consistently evolve the content and structure of a wiki. Fur-
thermore we propose XSLT as language for transformation
specification and provide working examples of selected trans-
formations to demonstrate that the Wiki Object Model and the
transformation framework are well designed. We believe that
our contribution significantly simplifies wiki “gardening” by
introducing the means of effortless restructuring of articles
and groups of articles. It furthermore provides an easily ex-
tensible foundation for wiki content transformations.

Categories and Subject Descriptors
H.4 [Information Systems]: Information Systems Applica-
tions; I.7 [Computing Methodologies]: Document and Text
Processing; D.2 [Software]: Software Engineering

General Terms
Design, Languages

Keywords
Wiki, Wiki Markup, WM, Wiki Object Model, WOM, Trans-
formation, Refactoring, XML, XSLT, Sweble

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym ’13, August 05 - 07 2013, Hong Kong, China
Copyright 2013 ACM 978-1-4503-1852-5/13/08 ...$15.00.

1. INTRODUCTION
The first wiki was created in 1995 by Ward Cunningham1.

In the following years the wiki idea was widely adopted and
today there are more than a hundred wiki engines available2

which offer a wide variety of features. One central abstraction
in the original wiki idea is the use of a “dirt simple” [14]
wiki markup language (WML) to author articles. This wiki
markup is then rendered as hypertext markup (HTM) by the
wiki engine for viewing in a browser.

Since then wikis have evolved many new features, how-
ever, two features are still painfully lacking in most engine
implementations: (a) a powerful abstraction of the content
stored in articles that facilitates visual editing, content trans-
formation, querying, data exchange and storage and (b) au-
tomated transformations that aid authors and maintainers in
applying modifications consistently within one article or over
multiple articles in a wiki.

We believe that these shortcomings are both related to
the above-mentioned central abstraction of using a markup
language to represent content. While wikis evolved so did
their markup languages. Today most wiki engines are faced
with the fact that working with the content in their wikis
is extremely difficult due to a format that does not lend it-
self to processing by a computer program. Since computers
are barely able to access the wealth of information stored
in WMLs, features like visual editing or automated content
transformation are only slowly entering the world of wikis.

In [7] we have demonstrated that it is possible to implement
proper parsers for today’s WMLs. We did so by tackling one
of the most notorious WML dialects, namely the wiki markup
used by MediaWiki. In the work at hand we shift the focus
on a richer abstraction of the content that has thus become
possible and transformations of wiki content enabled by this
abstraction.

At this point we also like to clarify our usage of the terms
refactoring and transformation. The term refactoring was orig-
inally used to describe behavior preserving transformations
of program code written in languages like Smalltalk, C++,
or Java [15]. Fowler defines “Refactoring [as] the process of
changing a software system in such a way that it does not al-
ter the external behavior of the code yet improves its internal
structure.” [9]

The term has also found its way into literature about wikis
[6, 16, 17] to describe transformations which for example split
the content of one article into two articles. However, in the

1http://c2.com/cgi/wiki?WikiHistory
2http://www.wikimatrix.org

http://c2.com/cgi/wiki?WikiHistory
http://www.wikimatrix.org

context of a wiki it is not the behavior of a software system that
is of interest but the body of knowledge that a wiki imparts
to the reader.

We therefore propose to use the term refactoring for a trans-
formation in which the internal representation of articles is
altered in such a way that the rendered pages of the wiki,
which are presented to the user, will not have changed in
any way. Examples for refactorings are transformations of
programming-language constructs embedded in articles or
pretty-printing of the internal representation.

This article makes the following contributions:

• We propose a framework for defining and performing
transformations on wiki articles.

• We present a catalog with basic transformations and
refactorings applicable to most wiki markup languages.

The remainder of this paper is organized as follows. In
section 2 we will discuss the state of the art in wiki engine
technology and transformations in the wiki. In section 3 we
introduce the model over which we define and perform trans-
formations. In section 4 we present a catalog of transforma-
tions and discuss selected transformations in detail. Finally,
section 5 will discuss the results of our work and section 6
provides an outlook on future research in this field.

2. STATE OF THE ART

2.1 Representation of article content
Article content is usually stored as wiki markup which

is a purely textual representation of data that, if analyzed
properly, exhibits a rich structure. The work presented in
this paper is based on our findings in [7], where we show
how to implement a parser that can accurately convert wiki
markup into an abstract syntax tree (AST) without loosing
the original formatting of the WM.

While we were the first to present a fully-functional parser
for a complicated WML, the realization that wiki content
should be represented by well-structured data has been
around for some time. We believe that two schools of thought
can be identified.

The first school of thought addresses the front-end of wikis
directly by advocating a standardized markup language
called WikiCreole [18] that was supposed to be shared by all
wiki engines. An important point of their work was that the
language was well-founded by a formal grammar [11] and
an XML format [12] which in turn would have enabled wiki
developers to easily generate an AST from WM.

The second school of thought attacks at the back-end and is
mostly championed by developers of semantic wikis. Unlike
unifying the front-end of wikis by demanding a common
WML for all wikis, standardizing the back-end of wikis does
not interfere with the user experience of editing in a wiki.

Völkel et al. were among the first to present a structured
data format, called Wiki Interchange Format (WIF) [25], to
enable processing and interchange of data between wikis.
Schaffert et al. describe the design principles of the semantic
wiki IkeWiki [19] which stores pages in an XML format that is
also called wiki interchange format (WIF). The DBpedia project
is a community effort with the goal of extracting information
from Wikipedia and providing that information as structured
data [1].

Buffa et al. presented the semantic wiki SweetWiki [2] in
2006 with XHTML as storage format, motivating the choice
with the difficulties of implementing a WYSIWYG editor for a
WML. In 2011 they presented SweetWiki again [3] introducing
a wiki object model which they describe as “an ontology of the
wiki itself” that allows the system to perform queries about
the wiki from within articles.

All work on interchange formats and wiki object models
proposes the use of a higher-level representation of wiki con-
tent but does not provide a definition. The only exception
we are aware of is our own work in which we followed the
second school of thought by defining and implementing a
Wiki Object Model [8].

2.2 Refactoring in the Wiki
Not only the software that drives a wiki evolves, the content

stored in a wiki’s articles also evolves. When articles grow
beyond a certain size, it can be better to split the article into
smaller ones. If two authors start two articles with different
names but which talk about the same subject, such articles
should be merged. There are many more cases in which
changing the content structure of a wiki becomes necessary.

On huge wikis such as Wikipedia3 the continuous degra-
dation of content structure causes considerable maintenance
work4. Unfortunately, in many cases programs are not yet
able to fix such issues automatically. Whether to split a sec-
tion and how to split a section can only be decided by a
human. However, no matter how involved the task, in the
end one or multiple articles will have to be altered.

In software engineering a discipline has emerged that tack-
les these same problems in the domain of program design.
The individual steps in the process of improving the design
of software are called refactorings. Fowler defines “Refactor-
ing [as] the process of changing a software system in such a
way that it does not alter the external behavior of the code
yet improves its internal structure.” [9] It is still the human
who has to decide what and how to refactor, but in software
engineering it is the machine that helps applying the changes.

To the wiki community the term refactoring is not new. A
search on the web5,6 shows that the term refactoring is occa-
sionally used to describe the process of changing the structure
of a wiki article without changing the meaning it conveys. But
in the case of wikis most of the time it is still a human who
does all the work. From deciding that a refactoring has be-
come necessary to working out the details of how to refactor
and finally performing the legwork of actually carrying out
the necessary changes.

As long as a refactoring only affects one or two individual
articles at a time it is still feasible. However, if a refactoring
affects multiple articles maintainers need computer support.
In Wikipedia so-called bots [10] can perform such support
tasks. Bots are programs which crawl the wiki from time to
time in search for articles which they have to alter according
to their assigned task. To this end maintainers file a bot
request and a bot operator has to program the bot to perform
the requested task the next time it runs. While better than
performing the work manually it is still hard work. Moreover
bots and people who can program bots are not available to

3http://www.wikipedia.org/
4http://en.wikipedia.org/wiki/Wikipedia:Maintenance
5http://c2.com/cgi/wiki?WikiRefactoring
6http://c2.com/cgi/wiki?RefactoringWikiPages

http://www.wikipedia.org/
http://en.wikipedia.org/wiki/Wikipedia:Maintenance
http://c2.com/cgi/wiki?WikiRefactoring
http://c2.com/cgi/wiki?RefactoringWikiPages

every wiki community.
Rosenfeld et al. [17] and Puente et al. [16] have introduced

refactorings similar to those found in software engineering to
wikis. Rosenfeld et al. perform refactorings in semantic [20]
wikis. Consequently the presented 7 refactorings operate on
semantic meta-data that is mostly stored in well-defined data
structures outside the actual articles. Puente et al. demon-
strate the benefits of using a mind map as user interface for
applying refactorings. They present 8 refactorings that oper-
ate on meta-data (categories) and from whole articles down
to section level.

2.3 Specification of Refactorings and Refac-
toring Data Structures

In order to specify refactorings and transformations we
take a look at the work done in the field of refactorings
for programming-languages. We will later reuse these tech-
niques to describe transformations in the context of wikis.

When Opdyke wrote his thesis on refactoring [15] he used
prose and mathematical expressions to describe the individ-
ual refactorings. The descriptions consisted of a set of oper-
ations (prose) and a set of preconditions (mathematical ex-
pressions) that had to be fulfilled if the refactoring was to be
applied. To specify complex refactorings, Opdyke first intro-
duced a set of simple, basic refactorings that were later used
by the complex refactorings.

3. GENERALIZED WIKI OBJECT MODEL

3.1 From Wiki Markup to an Object Model
Transformations can be defined over wiki markup as well

and this is the method most programmers choose that have
to transform wiki articles. However, this method has dis-
advantages. Two disadvantages stem directly from the fact
that WMLs are usually not formally defined: (i) This makes
it impossible to specify transformations formally and (ii) it is
not possible to specify transformations for wikis in general
since one always has to focus on one specific WML.

The fact that there is no formal specification also explains
why for most WMLs parsers that could produce a higher-
level representation are not available. Without a higher-level
representation transformations have to be implemented us-
ing complex textual search and replace techniques down to
algorithms which examine the WM character by character.
Moreover, with no parser at hand pure text transformations
are error-prone since some syntactic constructs are hard to
distinguish in WMLs.

As solution we propose to generate a higher-level represen-
tation from the WM first and then perform the transformation
on the higher-level representation as illustrated in figure 1 [4].
One way of obtaining such a representation is the transfor-
mation from WM to an abstract syntax tree (AST) by a parser.
While implementing parsers for WMLs is certainly not trivial
we have shown in [7] that it is possible and, if the parser is
driven by a formal grammar, one formally defines the respec-
tive WML at the same time.

We also want to specify transformations for wikis in gen-
eral, not only for one specific syntax. Parsers on the other
hand usually generate an abstract syntax tree that, as the
name suggests, is still tied to syntactic idiosyncrasies of the
language. We solve this issue by further abstracting to a
generalized wiki object model. Such a model will represent
features commonly found in WMLs in an easy, accessible and

standardized way while the model fully preserves WML-
specific information at same time. The details of this data
structure are explained in section 3.2.

Figure 1: Changing the domain simplifies the implementa-
tion of transformations.

Figure 1 illustrates the use of the WOM. Instead of taking
the difficult path by directly transforming from WM to WM′,
one can first change the domain. Once in the domain of
the WOM transformations are easy and safe (they can still
be semantically wrong though). We argue that changing the
domain twice and performing the transformation over the
WOM has more advantages than disadvantages over trying
to directly transform wiki markup.

3.2 Generalizing the WOM 1.0
In order to be able to discuss and rigorously define transfor-

mations we have to establish a data model. The transforma-
tions are applied to instances of this model. While we mainly
experiment with MediaWiki’s WML we want to show that
the model as well as the transformations defined over this
model are applicable to all wikis which follow the original
design principle of using WM as a front-end to HTM.

To become independent of MediaWiki’s idiosyncrasies we
take the Wiki Object Model as defined in [8] and generalize it.
Listing 1 shows a short article in MediaWiki’s WM serialized
as WOM XML and as rendered page to give the reader an
idea of the structure and elements of an article.

The WOM defines a document as a tree-like structure, sim-
ilar to the Document Object Model (DOM) of HTML [22].
The nodes of this structure are corresponding to those ele-
ments commonly found in WMLs. For a detailed listing and
explanation of all available nodes, please refer to [8].

To make it possible to represent arbitrary wiki markup the
following new tags were added:

Arbitrary elements A generalized WOM cannot support ev-
ery feature of every possible wiki engine. The e tag is
used to encode arbitrary elements in a WOM document
like a TikiWiki simple box7 or a MediaWiki transclusion8.
Both elements are not commonly available in different
wiki engines and therefore have no equivalent in the
WOM.

Substitution Arbitrary elements are only meaningful to
those wiki engines that exported the article as WOM
document (and therefore support the respective fea-
ture). To preserve as much information as possible for
other engines who do not support such features the

7http://tiki.org/WikiSyntax
8https://www.mediawiki.org/wiki/Transclusion

http://tiki.org/WikiSyntax
https://www.mediawiki.org/wiki/Transclusion

The ’’’Sweble’’’ Wikitext parser is an
[[Open-source software|open-source tool]]
to [[Parsing|parse]] the [[Wikitext]]
[[markup language]] used by [[MediaWiki]],
the software behind [[Wikipedia]].

== The current state of parsing ==
* list item 1
* list item 2

== How Sweble works ==
another section

[[Category:Parsing]]

<page title="Sweble" version="1.0">
<body>

<p>
<text>The </text>
<text>Sweble </text>
<text> Wikitext parser is an </text>
<intlink target="Open-source_software">

<title><text>open-source tool</text></title>
</intlink>
<text> to </text>
<intlink target="Parsing">

<title><text>parse</text></title>
</intlink>
<text> the </text>
<intlink target="Wikitext"/>
<text> </text>
<intlink target="Markup_language"/>
<text> used by </text>
<intlink target="MediaWiki"/>
<text>, the software behind </text>
<intlink target="Wikipedia"/>
<text>. </text>

</p>

<section level="2">
<heading>

<text> The current state of parsing </text>
</heading>
<body>

<text> list item 1</text>
<text> list item 2</text>

</body>

</section>
<section level="2">

<heading>
<text> How Sweble works </text>

</heading>
<body>

<p><text>another section </text></p>
<p><intlink target="Category:Parsing"/></p>

</body>
</section>

</body>
</page>

Listing 1: A severely reduced version of the article “Sweble” from the English Wikipedia. In the top left corner the WM
of the article is shown. To the right of the WM the rendering of the page is shown. Below a simplified version (collapsed
whitespace, no RTD) of the WOM XML for this article is printed.

substitution tag subst is introduced. It contains two
child elements, the replacement tag repl and the for
tag. The replacement tag contains an alternative repre-
sentation of the unsupported tag. The for tag contains
the e tags which will allow the exporting wiki to restore
the original element.

Round-Trip Data WMLs, like programming languages, of-
fer certain degrees of freedom to the author concerning
the formatting of the WM or code. Furthermore, ev-
ery wiki engine has its own markup syntax and some
wiki engines offer alternative syntaxes to express the
same thing. If a WOM document only stores semantic
information neither the exact WM formatting nor the
original WM syntax can be restored. To resolve this
problem rtd tags are interspersed in the WOM docu-
ment and text nodes must be wrapped in text tags to
be considered when restoring the original markup in
allusion to [5].

To illustrate how those three kinds of elements work to-
gether consider the following WM (MediaWiki): “[[Dog]]s”.
The WOM XML produced by our implementation is printed
in listing 2. The WM denotes an internal link pointing to
another article called Dog. However, the author wants to use
the plural. MediaWiki syntax allows authors to append or
prepend text directly to the link to the effect that the pre- or
postfix will be rendered as part of the link. Without such a

feature an author would have to repeat the whole word in its
plural form as link title (e.g. “[[Dog|Dogs]]”).

...
<subst><repl>

<intlink target="Dog">
<title><text>Dogs</text></title>

</intlink>
</repl><for>

<e postfix="s" target="Dog" type="intlink">
<rtd>[[Dog]]s</rtd>

</e>
</for></subst>

...

Listing 2: Example of how the e, subst, and rtd tags work.

Most wiki engines do not support link pre- or postfixes
which is why the generalized WOM doesn’t support them.
As remedy our implementation uses the e tag to preserve
the use of a link postfix. Since the e tag is meaningless to
other wikis the subst tag and its child tags are used to pro-
vide an alternative representation. Note that the alternative
representation should imitate the original meaning as well
as possible, however, this is not always possible. In this ex-
ample the original meaning is fully preserved but syntactic
subtleties are lost.

Finally, rtd and text tags are used to also preserve the
original WM. By concatenating all text nodes returned by the
following simple XPath [23] expression the original WM can
be restored:

//text[not(ancestor::repl)]|
//rtd[not(ancestor::repl)]

This expression selects all text and rtd nodes which are
not descendants of a repl tag. RTD information in repl tags
is excluded to prevent duplication with the RTD information
in the for tags.

4. TRANSFORMATIONS

4.1 Applying a Transformation
The content of a wiki is not exclusively defined by its arti-

cles. Especially semantic wikis maintain rich graphs of meta-
data that are not stored within the article source itself but in
RDF triple stores or relational databases [19, 21].

Another kind of information that is stored outside of the
article source is what Sint et al. [21] call management data. It
comprises authorship information, edit messages and time-
stamps, access restrictions, etc. but also redundant meta-data
that is usually computed from the articles and is needed by
the engine for better performance, queries or analytics. Ex-
amples are inter page link indices or full-text search indices.

When talking about transformations we only consider the
transformation of information that is commonly found in ar-
ticles. We furthermore assume that once the transformation
has been applied the management meta-data will be updated
by the respective wiki engine.

Figure 2: The transformation pipeline

The whole process of applying a transformation is illus-
trated in the left half of figure 2. It starts by retrieving all
affected articles as WOM documents from storage to which
the transformation is then applied. At this stage, the resulting
WOM′ has undergone a complete semantic transformation.
Articles can now be rendered from the transformed WOM′

documents into a presentation format like HTML and the
user will see the result of the transformation.

Before the whole operation is finished the management
meta-data required by most wikis has to be updated. This
also happens when an author manually changes an article
through an editor front-end and thus does not introduce a
new processing step to a wiki.

4.2 Restoring Wiki Markup
In the above walkthrough we assumed that the wiki engine

stores its articles as WOM documents. At the time of writ-
ing this is not the case in most wikis and a transformation
operation becomes more involved if a wiki offers its users
to textually edit articles in a WML. To better understand the
process we take a look at the right half of figure 2.

Before the transformation can be applied the retrieved WM
has to be converted to a WOM document. Afterwards pro-
cessing proceeds as discussed above until the management
meta-data has been updated. At this point the transformed
WOM′ document has to be converted back to WM′. As shown
in section 3.2 this is a straightforward operation. However,
since the transformation is a generic process which does not
know about the syntactic intricacies of the underlying WML
the rtd tags cannot be transformed correctly.

This is problematic if elements of the document are rewrit-
ten or new elements are added. When for example text is for-
matted as bold a generic transformation cannot know what
bold WM looks like for a specific wiki engine.

To fix these issues another engine-specific work step, called
post-processing, has to be introduced. After updating the
management meta-data and before converting the WOM′

document back into WM′, all elements which were newly
added or altered as well as all neighbors of altered, removed
or added elements have to be inspected and if necessary RTD
information has to be added or updated.

4.3 Elements in the WOM
Before we provide a catalog of basic transformations we

have to identify the elements of wiki articles to which trans-
formations can be applied. We will not go into detail here
since most of an article’s elements are borrowed from the
HTML 4 [22]. Instead we will operate on major structural
elements, elements that are not found in HTML 4 and cat-
egories of elements. For clarity we will write elements in
angle brackets (e.g. <section>) and groups of elements in
curly brackets (e.g. {formatting}). We identified the follow-
ing categories and elements relevant to the transformations
presented in this paper:

{list}: , , <dl>

{list item}: {definition list item},

{definition list item}: <dt>, <dd>

{table cell}: <th>, <td>

{content block}: <section>, <table>, <blockquote>,
<pre>, <p>, {list}

{running text}: {formatting},
<intlink> (inter/intra wiki link),
<extlink> (link to URL),
<text>

{formatting}: HTML layout tags (
, etc.),
HTML formatting tags

(, , <small>, etc.),
HTML semantic formatting tags

(<abbr>, <code>, etc.)

4.4 A Catalog of Transformations

4.4.1 Fundamental Transformations
While most transformations are simple to implement and

describe others can be complex. To simplify the implemen-
tation of complex transformations we introduce fundamental
transformations which can be combined into more complex
transformations. They are not disclosed to the user. We will
give one example of such a transformation.

wrap-in-p: A block of {running text} is not necessarily wrapped in a
paragraph. This is often the case if {running text} is located in a {list
item} or a {table cell} element. If these elements are dissolved it might
become necessary to wrap the {running text} in a paragraph instead.
The wrap-in-p transformation will be used in an example in
section 4.5.1.

4.4.2 Creation and Removal Transformations
In order to populate an article elements can be created and

also removed. Some elements are created explicitly (like a
<section>), others implicitly (e.g. the <heading> and <body>
element that are automatically created when a section is cre-
ated). When creating elements in an article the elements are
inserted into the WOM document without RTD information
attached. Post-processing will see to it that newly added
elements are properly formatted.

When removing elements from an article whole subtrees
are removed. This means that not only the element is re-
moved but all its children and children’s children are also
removed. Such an operation can remove elements that are
referenced elsewhere. It is the duty of removal transforma-
tions to walk the subtree that is marked for removal and look
for elements that are referenced elsewhere. If such elements
should be found the user has to be informed to decide how
to proceed.

4.4.3 Generic Transformations
Generic transformations apply to many different elements.

Table 1 gives an overview of the transformations presented
in this section and the elements they apply to. These trans-
formations are offered to users and sometimes rely on other
transformations to complete their task.

dissolve (unwrap): Pulls the children of an element in front of the element
and then removes the element.

convert-into: Converts one kind of element into another kind of element.
merge-with: Merges two adjacent elements of the same kind.
move-to (drag&drop): Select an item and move it to another location in

the article.
move-up-down: Two adjacent elements swap positions moving one of

them down and the other one up.
promote-demote: Promote or demote an element on a certain level to a

higher/lower level.
pretty-print: Reformat the WM stored in the RTD information of the

WOM document.
rename: Rename a resource and update all references to that resource.
move-to-article: Select an item and move it to a location within another

article.

4.4.4 Specialized Transformations
The transformations presented in this section are specific

to one type of element only.

Transformations for <table>s
move-row-column Move a row or column of table cells to a different

location in the table.
join-split-cells Join two adjacent cells into one cell spanning both cells or

split a spanning cell into individual cells.

Transformations for {running text}
wrap-selection Wrap a selection of {running text} into a {formatting}

element.
clear-formatting Remove all {formatting} from a selection of {running

text}.

Transformations for <extlink>s
replace-url Search a URL in all articles and replace that URL with a

different URL.

Transformations for {media}
replace-caption Search for all {media} elements that refer to a specific

resource and replace their captions with the given caption.

4.4.5 Wiki Transformations
Wiki transformations affect the wiki’s top-level elements,

the articles and categories. Puente et al. [16] describe the
following transformations on articles: rename-article, merge-
articles, split-articles, add-article-to-category, and remove-
article-from-category. Rosenfeld et al. [17] describe the
following transformations on categories: remove-category,
merge-categories, and change-subcategory-relationship.
Puente et al. [16] describe the following transformations
on categories: split-category and rename-category.

4.5 Specifying and Implementing Transfor-
mations

The WOM can have many different representations. The
WOM XML representation was already used in this work
and lends itself well to data exchange, storage in document
oriented databases but also for discussing the WOM. An-
other representation are data structures in programming lan-
guages. To work with the WOM in a program we’ve pre-
sented a set of Java interfaces in [8]. When implemented,
the WOM is represented by a graph of objects. This repre-
sentation is useful for directly manipulating a document, is
easily accessible in a program and very efficient in that ma-
nipulations and queries are fast as are conversions into other
formats.

In order to describe and discuss transformations we pro-
pose the use of the eXtensible Stylesheet Language: Transforma-
tions or in short XSLT 2.0 [24]. We decided to use XSLT for
the following reasons:

• XSLT is a high-level document transformation language
[13].

• XSLT is a “lingua franca” for transformations on the
web. Bindings to libraries which can perform XSLT
transformations are available for many major program-
ming languages.

• XSLT is a side-effect free language [13]. This simplifies
reasoning about the effects of transformations.

Whether transformations are implemented using XSLT or
whether to use an in-memory object model which is manipu-
lated programmatically remains the choice of the developer.
XSLT has the advantage of not being bound to a specific pro-
gramming language. It can also be exposed to the user who
can provide his own transformation scripts at run-time. In
contrast, we believe that the main argument for specifying
transformations programmatically is performance.

4.5.1 Example 1: Dissolving a List
As a first example we show how a list is dissolved. The wiki

markup of the article we want to transform is given in listing
3. The article consists only of an unordered list with 3 items.
The first item contains plain text, then an explicit paragraph
and then plain text with {formatting} markup. The next item
contains a nested list and the last item only contains plain
text.

The dissolve transformation will dissolve the list and the
list items but not the content of the list items. The content
will be wrapped in paragraphs and those paragraphs will
then replace the list and its items. When dissolving simple
{formatting} markup one can simply replace the formatting
element with its content, thus “unwrapping” the content and
removing the formatting.

Table 1: Matrix listing basic transformations and the elements to which they apply.

dissolve
(unwrap)

convert
into

merge
with

move to/
(drag&drop)

move
up/down

promote/
demote

pretty
print rename move to

article‡

<section> X§ – –1 X§ X§ X§ X X2,†,§ X†

<p> – X3 X4 X X – X – X
<table> – – – X X – X – X
, X X5 X6 X X – X – X
<dl> X – X7 X X – X – X
 X – X8 X X X X – X
<dt>, <dd> X – X9 X X X X – X
<hr> – – – X X – X – X
<intlink> X – – X – – X X10,$ X
<extlink> X – – X – – X – X
{media} – X11 – X – – X X10,$ X
{running text} – – – X – – X – X
<category> – – – – – X† X X†,$ –

1 use dissolve to merge into previous section
4 merge with <p>
6 merge with ,
9 merge with <dt>, <dd>
† Mentioned by Puente et al. in [16]
$ References have to be updated.

2 rename <heading>
5 transform into ,
7 merge with <dl>

10 rename link target
§ Since sections can be referenced the transforma-

tion may affect multiple articles.

3 transform into /, /,
<section>/<heading>

8 merge with
11 transform into <intlink>, <extlink>
‡ Affects two articles. More if a referencable ele-

ment was moved.

Dissolving a list is more involved since the individual items
have to be converted into paragraphs which is not straight-
forward. To simplify the definition of more complex trans-
formations we extract fundamental transformation steps as
individual transformations. In case of the dissolve transfor-
mation we extracted the wrap-in-p transformation.

The Transformation Script

In line 9 of listing 3 the element we want to dissolve is given
as parameter e. Usually the parameter would be injected from
outside the XSLT but for demonstration purposes we set the
parameter in the declaration using an XPath expression to
select the list. The dissolve transformation is coded in lines
11 − 27 as modified identity transformation that copies all
elements it encounters in the source document into the result
document.

Templates in XSLT are a way to produce output. The mod-
ified identity transformation template in line 11 matches any
element of the input and is therefore invoked when the XSLT
processor starts work by trying to invoke a template for the
root node /. If the current node is not e the otherwise case
in line 20 will be instantiated and the template will copy the
current node (not its children) to the result tree. Then tem-
plates are applied recursively to the children of the current
node which will in turn call the template again to now copy
the children.

This continues until the current element is e. Instead of
copying the list it applies the wrap-in-p template to the first
child of each of its list items in line 15 and 17. By applying
the template wrap-in-p the list will effectively be replaced by
whatever nodes the invoked template instantiates.

Lines 29 − 43 define helper functions which we will not
elaborate. Notice that this is a feature of XSLT 2.0. The trans-
formation works with XSLT 1.* as well but the script would
be more verbose to compensate the lack of expressiveness.

The remainder of the script defines the fundamental trans-
formation wrap-in-p. It is the task of the wrap-in-p trans-

formation to find sequences of non-{block content} elements
and wrap them into paragraph elements. {Block content}
elements are copied to the result tree unaltered. The trans-
formation is called on the first child node of a list item and
searches among its siblings until it finds a {block content}
element (stored in $first-block)

If there is a {block content} element we try to wrap the node
sequence from the current node (inclusive) to the first {block
content} element (exclusive) (stored in $head) in a paragraph
element. To prevent generating empty paragraphs we only
wrap a non-empty sequence. It is important to exclude RTD
information from the sequence. The siblings the script cur-
rently operates on are children of the list items. Any RTD
information encountered here is therefore specific to the list
and its items. Since we want to remove those, we also have
to remove their RTD information.

After wrapping any non-{block content} elements to the
result tree the {block content} element $first-block is copied
to the result tree and processing continues by recursively
invoking the wrap-in-p template on the sibling that comes
after the {block content} element $first-block.

If the wrap-in-p template does not find a {block content}
element from its current position the remaining nodes are
wrapped and written to the result tree in lines 68− 77. Again
we have to test for an empty sequence and make sure that no
list RTD information is leaked to the result tree.

Post-processing

After applying the transformation as described above the
resulting WOM′ document (see listing 3.5) can be rendered
and the user will see the intended result. However, if the
WOM′ document would be transformed back into wiki
markup at this point, the WM′ (see listing 3.3) will not cor-
respond to the WOM′ document. This can be automatically
tested by parsing the WM′ into a WOM′′ document again
and comparing both WOM′ and WOM′′.

The reason for the discrepancy lies in the RTD information.

Listing 3: Example Transformation 1: Dissolving a List
Li

st
in

g
3.

1
–

T
he

tr
an

sf
or

m
at

io
n

sc
ri

pt
:

1
<
?
x
m
l
v
e
r
s
i
o
n
=
"
1
.
0
"

e
n
c
o
d
i
n
g
=
"
U
T
F
-
8
"
?
>

2
<
x
s
l
:
s
t
y
l
e
s
h
e
e
t
v
e
r
s
i
o
n
=
"
2
.
0
"

3
x
m
l
n
s
=
"
h
t
t
p
:
/
/
s
w
e
b
l
e
.
o
r
g
/
s
c
h
e
m
a
/
w
o
m
"

4
x
m
l
n
s
:
l
o
c
=
"
l
o
c
a
l

s
t
u
f
f
"

5
x
m
l
n
s
:
x
s
=
"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
"

6
x
m
l
n
s
:
w
o
m
=
"
h
t
t
p
:
/
/
s
w
e
b
l
e
.
o
r
g
/
s
c
h
e
m
a
/
w
o
m
"

7
x
m
l
n
s
:
x
s
l
=
"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T
r
a
n
s
f
o
r
m
"
>

8 9
<
x
s
l
:
p
a
r
a
m

n
a
m
e
=
"
e
"

s
e
l
e
c
t
=
"
/
w
o
m
:
p
a
g
e
/
w
o
m
:
b
o
d
y
/
w
o
m
:
u
l
"

/
>

10 11
<
x
s
l
:
t
e
m
p
l
a
t
e

m
a
t
c
h
=
"
*
"
>

12
<
x
s
l
:
c
h
o
o
s
e
>

13
<
x
s
l
:
w
h
e
n

t
e
s
t
=
"
.
=
$
e
"
>

14
<
!
-
-
.
=
t
h
e
l
i
s
t
-
-
>

15
<
x
s
l
:
f
o
r
-
e
a
c
h

s
e
l
e
c
t
=
"
.
/
*
/
*
[
1
]
"
>

16
<
!
-
-
.
=
t
h
e
f
i
r
s
t
c
h
i
l
d
o
f
t
h
e
f
i
r
s
t
l
i
s
t
i
t
e
m
-
-
>

17
<
x
s
l
:
c
a
l
l
-
t
e
m
p
l
a
t
e

n
a
m
e
=
"
w
r
a
p
-
i
n
-
p
"

/
>

18
<
/
x
s
l
:
f
o
r
-
e
a
c
h
>

19
<
/
x
s
l
:
w
h
e
n
>

20
<
x
s
l
:
o
t
h
e
r
w
i
s
e
>

21
<
x
s
l
:
c
o
p
y
>

22
<
x
s
l
:
c
o
p
y
-
o
f

s
e
l
e
c
t
=
"
@
*
"
/
>

23
<
x
s
l
:
a
p
p
l
y
-
t
e
m
p
l
a
t
e
s

/
>

24
<
/
x
s
l
:
c
o
p
y
>

25
<
/
x
s
l
:
o
t
h
e
r
w
i
s
e
>

26
<
/
x
s
l
:
c
h
o
o
s
e
>

27
<
/
x
s
l
:
t
e
m
p
l
a
t
e
>

28 29
<
!
-
-
T
e
s
t
i
f
$
e
i
s
a
b
l
o
c
k
e
l
e
m
e
n
t
-
-
>

30
<
x
s
l
:
f
u
n
c
t
i
o
n

n
a
m
e
=
"
l
o
c
:
i
s
-
b
l
o
c
k
"

a
s
=
"
x
s
:
b
o
o
l
e
a
n
"
>

31
<
!
-
-
.
.
.
-
-
>
<
/
x
s
l
:
f
u
n
c
t
i
o
n
>

32 33
<
!
-
-
T
e
s
t
i
f
$
e
i
s
a
R
T
D
e
l
e
m
e
n
t
-
-
>

34
<
x
s
l
:
f
u
n
c
t
i
o
n

n
a
m
e
=
"
l
o
c
:
i
s
-
r
t
d
"

a
s
=
"
x
s
:
b
o
o
l
e
a
n
"
>

35
<
!
-
-
.
.
.
-
-
>
<
/
x
s
l
:
f
u
n
c
t
i
o
n
>

36 37
<
!
-
-
R
e
t
u
r
n
t
h
e
n
o
d
e
s
e
q
u
e
n
c
e

"
$
e
|
$
e
/
f
o
l
l
o
w
i
n
g
-
s
i
b
l
i
n
g
:
:
*
"
-
-
>

38
<
x
s
l
:
f
u
n
c
t
i
o
n

n
a
m
e
=
"
l
o
c
:
f
o
l
l
o
w
i
n
g
-
s
i
b
l
i
n
g
-
i
n
c
l
"
>

39
<
!
-
-
.
.
.
-
-
>
<
/
x
s
l
:
f
u
n
c
t
i
o
n
>

40 41
<
!
-
-
R
e
t
u
r
n
t
h
e
s
e
q
u
e
n
c
e
o
f
a
l
l
s
i
b
l
i
n
g
s
b
e
t
w
e
e
n
[
$
f
r
o
m
,
$
t
o
)
-
-
>

42
<
x
s
l
:
f
u
n
c
t
i
o
n

n
a
m
e
=
"
l
o
c
:
f
r
o
m
-
t
o
-
e
x
c
l
"
>

43
<
!
-
-
.
.
.
-
-
>
<
/
x
s
l
:
f
u
n
c
t
i
o
n
>

44 45
<
x
s
l
:
t
e
m
p
l
a
t
e

n
a
m
e
=
"
w
r
a
p
-
i
n
-
p
"
>
<
!
-
-
F
i
n
d
t
h
e
f
i
r
s
t
b
l
o
c
k

46
e
l
e
m
e
n
t
,
s
t
a
r
t
i
n
g
w
i
t
h
t
h
e
c
u
r
r
e
n
t
n
o
d
e
i
t
s
e
l
f
.
-
-
>

47
<
x
s
l
:
v
a
r
i
a
b
l
e

n
a
m
e
=
"
f
i
r
s
t
-
b
l
o
c
k
"

48
s
e
l
e
c
t
=
"
l
o
c
:
f
o
l
l
o
w
i
n
g
-
s
i
b
l
i
n
g
-
i
n
c
l
(
.
)
[
l
o
c
:
i
s
-
b
l
o
c
k
(
.
)
]
[
1
]
"

/
>

49
<
x
s
l
:
c
h
o
o
s
e
>

50 51
<
x
s
l
:
w
h
e
n

t
e
s
t
=
"
$
f
i
r
s
t
-
b
l
o
c
k
"
>
<
!
-
-
T
h
e
r
e
’
s
a
b
l
o
c
k
e
l
e
m
e
n
t
u
p
a
h
e
a
d
-
-
>

52
<
x
s
l
:
v
a
r
i
a
b
l
e

n
a
m
e
=
"
h
e
a
d
"

53
s
e
l
e
c
t
=
"
l
o
c
:
f
r
o
m
-
t
o
-
e
x
c
l
(
.
,

$
f
i
r
s
t
-
b
l
o
c
k
)
[
n
o
t
(
l
o
c
:
i
s
-
r
t
d
(
.
)
)
]
"

/
>

54
<
x
s
l
:
i
f

t
e
s
t
=
"
$
h
e
a
d
"
>

<
!
-
-
W
e
f
o
u
n
d
n
o
n
-
b
l
o
c
k
e
l
e
m
e
n
t
s

55
t
o
w
r
a
p
i
n
f
r
o
n
t
o
f
t
h
e
b
l
o
c
k
e
l
e
m
e
n
t
-
-
>

56
<
p
>

57
<
x
s
l
:
a
p
p
l
y
-
t
e
m
p
l
a
t
e
s

s
e
l
e
c
t
=
"
$
h
e
a
d
"

/
>

58
<
/
p
>

59
<
/
x
s
l
:
i
f
>

Li
st

in
g

3.
1

–
T

he
tr

an
sf

or
m

at
io

n
sc

ri
pt

(c
on

ti
nu

ed
):

60
<
!
-
-
c
o
p
y
t
h
e
b
l
o
c
k
e
l
e
m
e
n
t
a
s
i
s
-
-
>

61
<
x
s
l
:
a
p
p
l
y
-
t
e
m
p
l
a
t
e
s

s
e
l
e
c
t
=
"
$
f
i
r
s
t
-
b
l
o
c
k
"

/
>

62
<
!
-
-
C
o
n
t
i
n
u
e
w
r
a
p
p
i
n
g
a
f
t
e
r
t
h
e
b
l
o
c
k
e
l
e
m
e
n
t
-
-
>

63
<
x
s
l
:
f
o
r
-
e
a
c
h

s
e
l
e
c
t
=
"
$
f
i
r
s
t
-
b
l
o
c
k
/
f
o
l
l
o
w
i
n
g
-
s
i
b
l
i
n
g
:
:
*
[
1
]
"
>

64
<
x
s
l
:
c
a
l
l
-
t
e
m
p
l
a
t
e

n
a
m
e
=
"
w
r
a
p
-
i
n
-
p
"

/
>

65
<
/
x
s
l
:
f
o
r
-
e
a
c
h
>

66
<
/
x
s
l
:
w
h
e
n
>

67 68
<
x
s
l
:
o
t
h
e
r
w
i
s
e
>

<
!
-
-
T
h
e
r
e
a
r
e
n
o
m
o
r
e
b
l
o
c
k

69
e
l
e
m
e
n
t
s
,
w
r
a
p
t
h
e
r
e
m
a
i
n
i
n
g
e
l
e
m
e
n
t
s
-
-
>

70
<
x
s
l
:
v
a
r
i
a
b
l
e

n
a
m
e
=
"
r
e
m
a
i
n
d
e
r
"

71
s
e
l
e
c
t
=
"
l
o
c
:
f
o
l
l
o
w
i
n
g
-
s
i
b
l
i
n
g
-
i
n
c
l
(
.
)
[
n
o
t
(
l
o
c
:
i
s
-
r
t
d
(
.
)
)
]
"

/
>

72
<
x
s
l
:
i
f

t
e
s
t
=
"
$
r
e
m
a
i
n
d
e
r
"
>

<
!
-
-
B
u
t
o
n
l
y
i
f
t
h
e
r
e
a
r
e
a
n
y
-
-
>

73
<
p
>

74
<
x
s
l
:
a
p
p
l
y
-
t
e
m
p
l
a
t
e
s

s
e
l
e
c
t
=
"
$
r
e
m
a
i
n
d
e
r
"

/
>

75
<
/
p
>

76
<
/
x
s
l
:
i
f
>

77
<
/
x
s
l
:
o
t
h
e
r
w
i
s
e
>

78 79
<
/
x
s
l
:
c
h
o
o
s
e
>

80
<
/
x
s
l
:
t
e
m
p
l
a
t
e
>

81 82
<
/
x
s
l
:
s
t
y
l
e
s
h
e
e
t
>

Li
st

in
g

3.
2

–
T

he
w

ik
im

ar
ku

p
be

fo
re

tr
an

sf
or

m
at

io
n:

1
*

I
t
e
m

1
.
1

<
p
>
I
t
e
m

1
.
2
<
/
p
>

I
t
e
m

<
b
>

1
.
3
<
/
b
>

2
**

I
t
e
m

2
.
1

3
**

I
t
e
m

2
.
2

4
*

I
t
e
m

3

Li
st

in
g

3.
3

–
T

he
w

ik
im

ar
ku

p
af

te
r

tr
an

sf
or

m
at

io
n:

1
I
t
e
m

1
.
1

<
p
>
I
t
e
m

1
.
2
<
/
p
>

I
t
e
m

<
b
>

1
.
3
<
/
b
>
*
*

I
t
e
m

2
.
1

2
**

I
t
e
m

2
.
2

3
I
t
e
m

3

Li
st

in
g

3.
4

–
T

he
w

ik
im

ar
ku

p
af

te
r

po
st

-p
ro

ce
ss

in
g:

1
I
t
e
m

1
.
1

<
p
>
I
t
e
m

1
.
2
<
/
p
>

2 3
I
t
e
m

<
b
>
1
.
3
<
/
b
>

4
*

I
t
e
m

2
.
1

5
*

I
t
e
m

2
.
2

6 7
I
t
e
m

3

Li
st

in
g

3.
5

–
T

he
W

O
M
′

X
M

L
af

te
r

tr
an

sf
or

m
at

io
n:

1
.
.
.

2
<
p
>
<
t
e
x
t
>

I
t
e
m

1
.
1

<
/
t
e
x
t
>
<
/
p
>

3
<
p
>

4
<
r
t
d
>
&
l
t
;
p
&
g
t
;
<
/
r
t
d
>

5
<
t
e
x
t
>
I
t
e
m

1
.
2
<
/
t
e
x
t
>

6
<
r
t
d
>
&
l
t
;
/
p
&
g
t
;
<
/
r
t
d
>

7
<
/
p
>
<
p
>

8
<
t
e
x
t
>

I
t
e
m

<
/
t
e
x
t
>

9
<
b
>
<
r
t
d
>
&
l
t
;
b
&
g
t
;
<
/
r
t
d
>

10
<
t
e
x
t
>
1
.
3
<
/
t
e
x
t
>

11
<
r
t
d
>
&
l
t
;
/
b
&
g
t
;
<
/
r
t
d
>
<
/
b
>

12
<
/
p
>

13
<
u
l
>

14
<
l
i
>

15
<
r
t
d
>
*
*
<
/
r
t
d
>

16
<
t
e
x
t
>

I
t
e
m

2
.
1
<
/
t
e
x
t
>

17
<
r
t
d
>

18
<
/
r
t
d
>

19
<
/
l
i
>
<
l
i
>

20
<
r
t
d
>
*
*
<
/
r
t
d
>

21
<
t
e
x
t
>

I
t
e
m

2
.
2
<
/
t
e
x
t
>

22
<
r
t
d
>

23
<
/
r
t
d
>

24
<
/
l
i
>

25
<
/
u
l
>

26
<
p
>
<
t
e
x
t
>

I
t
e
m

3
<
/
t
e
x
t
>
<
/
p
>

27
.
.
.

While we did strip the RTD information for the list item nodes
we did not update RTD information for newly added nodes,
namely the paragraph nodes and the nested list items. This
is done in post-processing by adding the necessary newlines
in front of and after the paragraphs and by updating the list
item prefixes (the “*” characters at the beginning of a line).
Only now will the recovered wiki markup correspond to the
intention of the transformation (see listing 3.4).

4.5.2 Example 2:
Moving a Paragraph to another Article

Dissolving a list is a transformation local to one article.
Moving a section from one article to another affects two ar-
ticles, however, an XSLT script can only transform one doc-
ument at a time. To overcome this limitation we introduce
another element to the WOM: the <articles> node. Every
time more than one article is affected the articles are stored in
one document as children of the <articles> node. This way
both articles are addressable by the XSLT script using XPath
expressions.

4.5.3 Example 3: Renaming an Article
Renaming a resource like a category or an article affects

every article in which the resource is referenced. One way
to apply such a transformation is to put all articles into an
<articles> node and thus apply the transformation to the
whole wiki. Every article that does not reference the resource
is copied unaltered, those who do contain a reference will be
transformed.

However, this is impractical even for small wikis and im-
possible for big wikis since it requires too much processing
power and memory resources. Hence, the set of affected ar-
ticles has to be determined using an index or a similar data
structure a priori. Such an index is typically part of the re-
dundant meta-data of a wiki engine and for the purpose of
this example we assume that the wiki engine does provide a
means of quickly identifying all affected articles.

Once the set of affected articles is determined they are trans-
formed separately. This is possible since the rename-article
transformation can work with a single article at a time. Pro-
cessing each affected article separately ensures that the mem-
ory resources of the machine on which the transformation is
performed are not exhausted. Below the XSLT script for the
rename-article transformation is printed (only the part that
addresses internal links).
...

<xsl:template match="@*|node()">
<xsl:copy>

<xsl:apply-templates select="@*|node()" />
</xsl:copy>

</xsl:template>

<xsl:template match="wom:intlink[@target=$search]">
<intlink>

<xsl:attribute name="target">
<xsl:value-of select="$replace" />

</xsl:attribute>
<xsl:copy-of select="@*[name() != ’target ’]" />
<xsl:apply-templates

select="node()[name() != ’rtd’]" />
<xsl:if test="not(./wom:title)">

<title>
<text><xsl:value-of select="@target" /></text>

</title>
</xsl:if>

</intlink>
</xsl:template>

...

5. RESULTS AND LIMITATIONS
By implementing various transformations from the list of

examples presented in sections 4.4.1 − 4.4.5 we could confirm
that the separation into a semantical transformation and the
post-processing to rectify the RTD information is well cho-
sen. The XSLT script for renaming an article in section 4.5.3
demonstrates this. The script focuses on the target of an inter-
nal link and how the title of an internal link changes when the
target changes. The developer of a transformation does not
have to deal with syntactic intricacies of the underlying WM.
The question of how to for example map prefix and postfix of
a MediaWiki internal link to an altered title is left to the wiki
engine specific post-processing step.

Our tests show further that the duration of a transforma-
tion9,10 is dominated by the conversion of WM to a WOM
document11 (µ ≈ 27ms,M ≈ 8ms, σ ≈ 90ms) and the XSLT
transformation12 (µ ≈ 13ms,M ≈ 4ms, σ ≈ 44ms). Perform-
ing a transformation programmatically (in Java in our case)
is considerably faster (µ < 1ms,M < 1ms, σ < 1ms) since
the document is altered directly and is not completely re-
created. If articles are stored as WOM documents in the data
store and the transformation is implemented programmati-
cally the process is dominated by the time it takes to serialize
and de-serialize the articles from the data store. Finally, post-
processing and conversion from the transformed WOM doc-
ument to WM adds little to the overall transformation time
(each have µ < 1ms,M < 1ms and σ < 4ms).

A limitation to our approach is the fact that we are restricted
to the content of an article. Especially semantic wikis contain
rich semi-structured data which is stored as meta-data out-
side the articles and is thus not accessible to a transformation.

Another limitation is the complexity of XSLT. Even though
a wiki maintainer can focus exclusively on the semantics of a
transformation learning XSLT is an entry barrier.

Finally, while renaming an article that is referenced in 1000
other articles takes less than two minutes on our test machine,
there are articles and templates in the English Wikipedia10

that are referenced in more than 10000 other articles. In such
cases our unoptimized implementation would need up to 20
minutes which may not be acceptable and would demand
further social protocol to coordinate a big transformation.

6. CONCLUSION AND FUTURE WORK
The wiki community has recognized the importance of as-

sisting authors and maintainers with “gardening” their wikis.
Recent work in this area has introduced methods from soft-
ware engineering, namely refactorings, to wikis. However,
so far refactorings for wikis focus either on meta-data or can-
not alter the structure of articles below section level. We
believe that these limitations stem from the fact that content
in articles is barely accessible to computers. By introducing a
generalized Wiki Object Model and by demonstrating how to
rigorously specify and apply transformations we have over-
come these limitations.

9Measured on an Intel Core 2 Quad Q9550 with 8 GB RAM,
single threaded. The article Hypothalamus was renamed and
622 articles were processed. µ denotes the mean, M the me-
dian and σ the standard deviation over all processed articles.
Articles are UTF-8 encoded with an average size of 30kB.

10We use a dump from the English Wikipedia dated 07/03/2012.
11Using the Sweble parser for MediaWiki’s WM
12Using the Saxon-HE 9.4 XSLT processor

Future work will focus on improving and extending the
methods we have presented in this article. The transforma-
tions proposed here only give a cursory overview. We seek
to extend the list of transformations and to add detailed de-
scriptions to each transformation.

Another place for improvement is the scope of transfor-
mations. The methods we presented apply to information
stored within articles. Information stored in meta-data and
other data structures of the wiki is excluded. Future research
will try to lift this restriction, thus allowing us to transform
all kinds of information stored in wikis using the same trans-
formation mechanism.

In conclusion, we believe that using XSLT to rigorously
specify and discuss transformations is a good choice for ex-
perts. However, while XSLT scripts enable authors to spec-
ify transformations themselves without modifying the wiki
software, the XSLT language is too complex for the layman.
Future research will explore ways of empowering authors to
specify transformations with simplified, more comprehensi-
ble tools.

7. REFERENCES
[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives.
Dbpedia: a nucleus for a web of open data. In
Proceedings of the 6th international The semantic web and
2nd Asian conference on Asian semantic web conference,
ISWC’07/ASWC’07, pages 722–735, Berlin, Heidelberg,
2007. Springer-Verlag.

[2] Michel Buffa and Fabien Gandon. Sweetwiki: semantic
web enabled technologies in wiki. In Proceedings of the
2006 international symposium on Wikis, WikiSym ’06,
pages 69–78, New York, NY, USA, 2006. ACM.

[3] Michel Buffa, Fabien Gandon, Peter Sander, Catherine
Faron, and Guillaume Ereteo. Sweetwiki: A semantic
wiki. Web Semantics: Science, Services and Agents on the
World Wide Web, 6(1), 2011.

[4] Michael L Collard and Jonathan I Maletic.
Document-oriented source code transformation using
xml. In Proceedings of 1st International Workshop on
Software Evolution Transformation (SET’04), Delft, The
Netherlands, Nov, volume 9, pages 11–14, 2004.

[5] Michael L. Collard, Jonathan I. Maletic, and Andrian
Marcus. Supporting document and data views of
source code. In Proceedings of the 2002 ACM symposium
on Document engineering, DocEng ’02, pages 34–41, New
York, NY, USA, 2002. ACM.

[6] Oscar Díaz, Gorka Puente, and Cristóbal Arellano. Wiki
refactoring: an assisted approach based on ballots. In
Proceedings of the 7th International Symposium on Wikis
and Open Collaboration, WikiSym ’11, pages 195–196,
New York, NY, USA, 2011. ACM.

[7] Hannes Dohrn and Dirk Riehle. Design and
implementation of the sweble wikitext parser:
unlocking the structured data of wikipedia. In
Proceedings of the 7th International Symposium on Wikis
and Open Collaboration, WikiSym ’11, pages 72–81, New
York, NY, USA, 2011. ACM.

[8] Hannes Dohrn and Dirk Riehle. Wom: An object model
for wikitext. Technical report, Technical Report
CS-2011-05, University of Erlangen, Dept. of Computer
Science, 2011.

[9] Martin Fowler, Kent Beck, John Brant, William Opdyke,
and Don Roberts. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional, 1 edition,
July 1999.

[10] A. Halfaker and J. Riedl. Bots and cyborgs: Wikipedia’s
immune system. Computer, 45(3):79–82, March 2012.

[11] Martin Junghans, Dirk Riehle, Rama Gurram, Matthias
Kaiser, Mário Lopes, and Umit Yalcinalp. A grammar
for standardized wiki markup. In Proceedings of the 4th
International Symposium on Wikis, WikiSym ’08, pages
21:1–21:8, New York, NY, USA, 2008. ACM.

[12] Martin Junghans, Dirk Riehle, and Umit Yalcinalp. An
xml interchange format for wiki creole 1.0. SIGWEB
Newsl., 2007(Winter), December 2007.

[13] Michael Kay. XSLT Programmer’s Reference. Wrox Press
Ltd., Birmingham, UK, UK, 2nd edition, 2001.

[14] Bo Leuf and Ward Cunningham. The Wiki Way: Quick
Collaboration on the Web. Addison-Wesley Professional,
April 2001.

[15] William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois,
Urbana-Champaign, IL, USA, 1992.

[16] Gorka Puente and Oscar Díaz. Wiki refactoring as mind
map reshaping. In Proceedings of the 24th international
conference on Advanced Information Systems Engineering,
CAiSE’12, pages 646–661, Berlin, Heidelberg, 2012.
Springer-Verlag.

[17] M. Rosenfeld, A. Fernández, and A. Díaz. Semantic
wiki refactoring. a strategy to assist semantic wiki
evolution. In Proceedings of the Fifth Workshop on
Semantic Wikis (SemWiki 2010), co-located with 7th
European Semantic Web Conference, ESWC, 2010.

[18] Christoph Sauer, Chuck Smith, and Tomas Benz.
Wikicreole: a common wiki markup. In Proceedings of
the 2007 international symposium on Wikis, WikiSym ’07,
pages 131–142, New York, NY, USA, 2007. ACM.

[19] Sebastian Schaffert. Ikewiki: A semantic wiki for
collaborative knowledge management. In Enabling
Technologies: Infrastructure for Collaborative Enterprises,
2006. WETICE’06. 15th IEEE International Workshops on,
pages 388–396. IEEE, 2006.

[20] Sebastian Schaffert, François Bry, Joachim Baumeister,
and Malte Kiesel. Semantic wikis. software, IEEE,
25(4):8–11, 2008.

[21] Rolf Sint, Stephanie Stroka, Sebastian Schaffert, and
Roland Ferstl. Combining unstructured, fully
structured and semi-structured information in semantic
wikis. In Christoph Lange, Sebastian Schaffert, Hala
Skaf-Molli, and Max Völkel, editors, SemWiki, volume
464 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

[22] The World Wide Web Consortium. HTML 4.01
Specification. http://www.w3.org/TR/html401,
December 1999.

[23] The World Wide Web Consortium. XML Path Language
(XPath) Version 1.0. http://www.w3.org/TR/xpath,
November 1999.

[24] The World Wide Web Consortium. XSL
Transformations (XSLT) Version 2.0.
http://www.w3.org/TR/xslt20, January 2007.

[25] Max Völkel and Eyal Oren. Towards a wiki interchange
format (wif). In Proceedings of the 1st Workshop on
Semantic Wikis, Budva, Montenegro, 2006.

http://www.w3.org/TR/html401
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt20

	Introduction
	State of the Art
	Representation of article content
	Refactoring in the Wiki
	Specification of Refactorings and Refactoring Data Structures

	Generalized Wiki Object Model
	From Wiki Markup to an Object Model
	Generalizing the WOM 1.0

	Transformations
	Applying a Transformation
	Restoring Wiki Markup
	Elements in the WOM
	A Catalog of Transformations
	Fundamental Transformations
	Creation and Removal Transformations
	Generic Transformations
	Specialized Transformations
	Wiki Transformations

	Specifying and Implementing Transformations
	Example 1: Dissolving a List
	Example 2: Moving a Paragraph to another Article
	Example 3: Renaming an Article

	Results and Limitations
	Conclusion and Future Work
	References

