
User-evolvable Tools in the Web

Jens Lincke Robert Hirschfeld
Hasso-Plattner-Institut

Universität Potsdam, Germany
{firstname.surname}@hpi.uni-potsdam.de

ABSTRACT
Self-supporting development environments like Smalltalk
and Emacs can be used to directly evolve themselves, mak-
ing their tools very malleable and adaptable. In Web-based
software development environments users can collaborate in
creating software without having to install the environment
locally. Bringing these two together and making Web-based
environments self-supportive is challenging, since users have
to take care of to breaking the system, since there might be
others using it also. Environments aimed at end-users usu-
ally provide a scripting level above the base system. Instead
of providing users with a fixed set of tools, we propose to
make the tools user-evolvable by building them as script-
able objects in a shared user editable repository. In our
system, the Lively Kernel, the core system is developed us-
ing modules and classes, and on top of it users create active
content by directly manipulating and scripting objects. By
leveraging the scripting level for the development of tools
themselves, we allow users to adapt their tools in a self-
supporting way, without the need to invasively change the
system’s core. In this paper we show how development tools
in Lively are collaboratively evolved. Tools can be directly
explored, adapted, and published in a shared manner while
they are being used.

1. INTRODUCTION
Authoring content in the Web has become increasingly

popular and people often use Web-based applications when
they have to collaboratively write a text or create a presenta-
tion. Sometimes they even use the Web to develop programs
directly within a Web-browser [9, 17]. These Web-based de-
velopment environments have to be created and evolved just
as other programs too. Some development environments
like Emacs and Smalltalk [6, 8] allow developers to directly
change the code of the system and experience those changes
at runtime. Developers get immediate feedback and the sys-
tem evolves as they are using it. As an example, this allows
developers to directly fix bugs as they occur.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

We use our Web-based development environment Lively
Kernel [9, 13] to evolve itself. After an initial time of boot-
strapping using external tools, we started programming with
the Lively Kernel running on a Web-page to develop the sys-
tem using only itself and the tools we created on top of it.
As changing the system is open to all registered users, they
can directly evolve the system while using it. However, this
can be very dangerous: when changes of the users target
the base code of the system, they can break the whole en-
vironment for everyone. But changes can be reverted, so it
is not fatal when this accidentally happens, even though it
may break the development flow of other people.

Figure 1: Lowering the barrier for end-users to
adapt and evolve their tools.

In this paper we show how we moved the development
tools from the base system into the realm of scriptable ob-
jects. This way, the tools can be cloned and developers
can work on the clones, without breaking the tools they are
currently using. By doing so, we lowered the barrier for
end-users to adapt their tools to evolve the environment (as
shown in Figure 1). By using the scripting level, they do not
have to learn a second set of tools and concepts to adapt the
environment for their needs.

The remainder of the paper is structured as followed. Sec-
tion 2 motivates self-supporting development environments.
Section 3 gives a general overview of a self-supporting Web-
based development environment. Section 4 describes the
approach of developing tools by scripting objects and pub-
lishing them in a shared repository. Section 5 discusses the
approach. Section 6 evalutes how the approach was used
in one collaborative environment and gives an illustrating
example. Section 7 discusses related work and section 8
concludes.

Figure 2: Abstract flow of changes and feedback in
a self-supporting development environment

2. MALLEABLE TOOLS IN SELF-
SUPPORTING DEVELOPMENT EN-
VIRONMENTS

Beeing able to change programming tools directly in
the same environment as they are used is common in
dynamic programming environments such as Lisp [18] or
Smalltalk [6]. A good description of adapting tools at run-
time gives Martin Fowler in his personal summary of the go-
toArhus2011 conference about a presentation of the Moose
Software visualization tool [2] by Tudor Gı̂rba [5], in which
he adapted the visualization tool at runtime:

“This philosophy sees the user of a tool as some-
one who is expected to tinker with the very guts
of the tool in order to mould it to her needs.
To achieve this, the tool not just opens up its
source code for inspection and modification, but
also makes it easy to make enhancements with
rapid feedback. The most common example that
springs to my mind is emacs - which encourages
a user to treat it as a malleable tool.” [4]

The concept of tool development in self-supporting devel-
opment environments such as Squeak [8] is shown in Fig-
ure 2. The environment has to be bootstrapped at some
point. The developer can then start creating and modify-
ing meta-objects such as classes. Because this happens at
run-time, developers will get feedback from the objects while
they are programming. The changes to the meta-objects are
typically also persisted outside of the development environ-
ment in some kind of code repository. Since tools, meta-
objects, and objects are in the same environment, there are
no extra levels of indirection: the tools can be simple and
powerful. But at the same time having no levels of indi-
rection can be problematic and even fatal if the developers
want to work on objects such as core classes that directly

Figure 3: Flow of changes and feedback in a system
were changes are encapsulated in scoped layers

or indirectly affect the tools themselves. The tools depend
on those core classes. Introducing an error or having an in-
termediate broken state is fatal for the whole environment.
That is why developers have to be careful, when they are
modifying those shared objects.

In collaborative Wiki-like development environment, such
as the Lively Kernel [9], programming mechanisms are
needed, that do not break the whole system for every-
one when users are adapting tools. We showed in previ-
ous work [12] how layers of context-oriented programming
(COP) [7, 1] can be used to separate and scope changes
as needed. This allows new features to adapt base code
directly but safely and to be gradually deployed [11]. As
shown in Figure 3, the shared behavior in classes is not di-
rectly changed, but encapsulated in a DevLayer that can
be scoped to objects and object structures. This way, the
tools that are needed for development can be excluded from
possible malicious changes during development.

3. CREATING ACTIVE CONTENT IN
LIVELY KERNEL

This section gives an overview of Lively Kernel, a self-
supporting Web-based development environment. The
Lively Kernel (often just abbreviated as Lively) is built us-
ing Web technology, but it is deriving from a Smalltalk back-
ground, the terminology is different. Lively serves as a plat-
form to experiment with novel programming language con-
cepts and tool development approaches. For an introduction
to Lively Kernel see [9, 10, 13].

3.1 Morphs
Graphical objects in the Lively Kernel are called morphs.

Morphs are hierarchical structures that are composed of
other morphs. Applications and tools in the Lively Ker-
nel are published as serializations of morphs. These objects
can be directly manipulated and contain their own behav-
ior. Cloning objects allows users to experiment and develop

Figure 4: Morphs are serialized as Parts, grouped in PartSpaces inside the PartsBin

safely on copies — publishing them when satisfied with their
changes. Morphs are graphical objects users can directly in-
teract with. In Morphic [15, 16, 14] based architectures
everything can be taken apart, inspected, and put together
in a new way. Morphs can have different shapes and other
morphs as submorphs. A morph can only have one par-
ent. In Lively Kernel, morphs can have a name and they
get unique identifiers. Duplicating a morph creates a new
morph with a new unique identifier. The root of the scene
graph in the Lively Kernel is called world. The world itself
is also a morph and can be inspected and changed by the
user in the same way every other morph can.

3.2 Parts
Parts are graphical objects the original developer decided

to extract from the world and publish separately, so that
they can be used and developed in other worlds too. A part
contains not only a single object but also all the objects
that belong to this object, including all the submorphs. A
serialized part is published under a name in a PartSpace as
shown in Figure 4. Some meta-information and a preview of
that part are stored separately. By publishing a part, a new
revision is created and users can revert changes as needed.
All the parts are stored in a PartsBin and are grouped in
PartsSpaces which also provide a name-space. Morphs that
are used to work on other morphs are called tools. They can
range from a simple ColorChooser or to complex tools such
as an ObjectEditor. The screenshot in Figure 5 shows the
Tools PartSpace in an PartsBin with a selected ObjectEditor
and its details.

3.3 Direct Manipulation and Scripting
A morph’s properties like style, position, extent or text

content can be directly changed using Lively’s halo user in-
terface and tools like the StyleEditor that can be invoked
from the halo. See Figure 8 for a morph with halo. Parts

in Lively consist usually of several other morphs forming a
tree structure also called scene graph. The composition of
morphs can be changed via drag and drop or by using the
halo. Since scripting in the Lively Kernel relies on dynamic
name lookup in the scene graph, changing the composition
can not only change the appearance but also the behavior
of morphs. Due to the JavaScript object model, a morphs’s
scripts are also just properties, which happen to be func-
tions. So, by overriding methods of an object’s class, an
object can directly adapt behavior of the base system.

4. DEVELOPING TOOLS AS SCRIPTED
OBJECTS

The Lively Kernel provides two levels of editing:

1. The base level, which allows editing modules and
classes that indirectly change the behavior of ob-
jects [10].

2. The scripting level, which allows editing object state
such as properties, style, and composition as well as
editing object behavior such as scripts and connec-
tions [13].

The first generation of Lively Kernel tools were developed
with the first level. Using classical object-oriented design,
employing classes and patterns, and separating the data
model from the user interface. With this approach devel-
opers can get immediate feedback and it allowed to evolve
the system as they are using it. But as shown in Figure 2,
it is easy to break the system accidentally while doing this,
because the changes also affect the tools that are used to
make the changes.

Developing tools as scripted objects allows users to di-
rectly change the graphical objects, their style, the composi-

Figure 5: PartsBin with open ObjectEditor in Tool category showing details

Figure 6: Flow of changes and feedback in a system
were changes are encapsulated in scoped layers

tion and their scripted behavior. Instead of having to adapt
the behavior either in the class or with development lay-
ers, the users can shape the tools using direct manipulation
too. Figure 6 shows that the dangerous cycle of changing a
behavior and breaking a tool is broken by cloning the part
first. Developers can change scripts and objects directly in
a cloned part tool, without breaking the tool itself because
it has its own set of scripts and state. But the feedback
loop is still as short and tools can directly interact with the
objects they manipulate, because they stay in the same envi-
ronment. For example this allows developers to directly fix
a bug as it occurs, to fix a typo on a button label, rearrange
morphs to produce a tighter layout, or just change colors to
make the tools more appealing. Thus, adapting tools does
not necessarily mean programming.

4.1 Persistent Object-specific Behavior
Object specific scripts combine both material and pro-

cedural forms of authoring content [13]. Self [21] explored
this unification of state and behavior many years ago and
our implementation language JavaScript builds on the same
underlying concepts. One difference of the unification of be-
havior and state in JavaScript and Self is that the behavior
is transient in JavaScript since normal JavaScript closures
cannot be fully serialized. The standard JSON serializa-
tion mechanism does not support objects inheriting behav-
ior (classes, prototypes). It has no concept for serializing
arbitrary references in an object graph. It only serializes a
tree formed of nested objects, arrays, numbers, and strings.
We solved this problem by using our own version of closures
when adding scripts to objects. JavaScript functions are
closures that are bound to variables in the execution stack
of the virtual machine. By design, a JavaScript program
cannot introspect such state of Function objects. We solved
this limitations by defining persistent object specific behav-
ior using our own “addScript” method. This method ensures
that functions can be serialized and do not contain bound

variables that are not accessible after deserialization any
more. JavaScript does also not support multiple threads.
Therefore we do not have to serialize any running code in
the background. Stepping scripts, a form of pseudo paral-
lel programming used in Lively Kernel can be stopped and
restarted for (de-)serialization as needed.

4.2 Forward References From Base System
Into PartsBin

Some core tools have to be integrated into the base sys-
tem. The “StyleEditor”, “Inspector” and “ObjectEditor” are
tools that can be opened through the halo of an object.
Other parts can be opened directly through the world’s con-
text menu. However, the base system cannot guarantee that
these parts will be available or working correctly as they do
not belong to the base system. If someone breaks a tools,
a previous version can always be restored the same way as
a bad commit in a Wiki can be reverted. We thought of
referencing only known stable versions of a tool from within
the base system, but we would then have to update these
stable links, slowing down the evolution. If we will run into
problems with unstable tools, we might consider falling back
to this more conservative approach for core tools.

4.3 Cloning and Derivation History
When a morph gets duplicated, a new universally unique

identifier (UUID) is generated. The old identifier is remem-
bered in the derivation history of that morph. When using
object cloning for gaining safety in live coding sessions, re-
dundancy is generated which is hard to deal with manually.
But by tracking the copy history of objects, we can mitigate
this problem. For example, when a tool is developed by two
different users at the same time and their changes to the
tool have to be merged. The objects got new identifiers, be-
cause they were copied from the PartsBin, so comparing two
instances is difficult. But by capturing the copy history of
whole object structures, we can diff and merge such complex
graphical objects again.

4.4 Duplicated Source vs. Copied Objects
Copying source code is considered a bad programming

style. It increases redundancy that makes it harder for de-
velopers to deal with the amount of code. For example, if
a bug is fixed or a feature is added in the source, the bug
remains in the copy (or vice versa), if they are not changed
together. If the copied piece of code should be changed,
developers have to locate every copy and apply the change
manually – if they still have control over them.

Objects consist of identity, state and behavior, while
source code is just text. When we clone objects, we can
record this process in the objects themselves. In Lively, all
graphical objects know the identifiers of all the objects they
were copied from. When copying text, this information can
get lost, since the copying can only be traced by matching
the text.

5. DISCUSSION
This section discusses features and problems or our ap-

proach.

5.1 Problem of Object Clones
The redundancy introduced by cloning object can become

a problem: When a new feature is prototyped in an object

Figure 7: A SplitterMorph adjusts the extent of two
adjacent morphs when dragged

Figure 9: Published SplitterMorph in the PartsBin

and this object is duplicated and used in many places, chang-
ing that behavior in all copies may become difficult. As long
as the new objects are still only in one world, we can mi-
grate new features of bug fixes manually or using scripts.
We experimented with a special version of the object edi-
tor, that allowed to edit many instances at once [3], which
mitigated this problem when the objects with the cloned
behavior are in one world. But what if the object was al-
ready copied to different worlds? Developers have to search
through all worlds and migrate all copies of the object indi-
vidually. Automating this process or replacing it with smart
object migrations is part of our future work.

5.2 Scripts in Nested Objects
Our current ObjectEditor allows only to directly edit one

object at a time. The scripts of submorphs have to be edited
with separate editors each. This has lead to a style of pro-
gramming where a lot of scripts are attached to the first
level object and not distributed over all the involved objects
as in a typical Object-oriented design.

Figure 8: Editing the SplitterMorph with Halo and ObjectEditor

5.3 Source Code vs. Objects
Manipulating and scripting objects directly – in contrast

to making a plan to automatically build them – may result
in a lot of cruft in the objects that remains from the con-
struction process. When manipulating objects directly, we
tend to only work on the things we see. And naturally, there
are things we are not as aware of as others: Property entries
that are not used any more, whole scripts, or unused objects
that are still referenced.

Working with source code is more abstract than work-
ing with objects directly. Since developers do not interact
with the objects, they can be thrown away, if they are not
valuable user data, to clean up a system. When editing only
source code, it is much easier to keep the code clean, because
the representation is more condensed and everything is vis-
ible. When working with objects everything is opaque by
default and developers have to actively inspect objects indi-
vidually or use tools that visualize their state. This leads to
the problem, that a new skill is required when working with
objects directly: the object space has to be kept clean. This
problem is shared by all systems that persists objects. For
example, in the Smalltalk community developers also have
to keep their images clean. Since many developers are not
used to this – some developers make it a habit to regularly
throw away their images and bootstrap their projects from
fresh images. When there is no source representation as in
our approach the objects can not be thrown but have to be
cleaned up by the developers.

5.4 Prototyping
In Webwerkstatt, tools evolve regularly from of code snip-

pets and one-liners that were used even before the first draft
was finished. The feedback of using the tools on real user
data drives the development of the tools right from the be-
ginning. If the tool seems not to be useful it is easy to aban-
don since all scripting parts in Lively are self-contained and
not part of the core system. Discontinued prototypes and
unfinished ideas do not have to be immediately discarded in
Lively, as they do not pollute the base system anymore. The
fast changing tool prototypes are separated from the more
stable code of the core system. Prototypes are different from

sketches and specifications. They are usable and users can
get insights from working with them, playing around with
them, and changing them. Further, prototypes in Lively of-
ten look and feel like prototypes. They feel rough and still
malleable and are therefore less likely to be mistaken for the
finished product.

5.5 Immediate Feedback
Change should be immediate in the sense that it should

reflect to the user. Changing the color of an object should
be visible to the user. Changing the behavior of an object
should also be perceptible. If users make mistakes, an error
should be displayed as soon as possible. It is not always
easy to provide immediate feedback. It gets harder if what
is changed is more abstract and more dynamic. When the
change is only a modification of a property such as the color
or position, it is very easy to reflect the change in the sys-
tem. Bret Victor demonstrated ideas on how such immedi-
ate feedback could be given in easy to visualize systems [22],
but it is very hard to integrate such feedback in general pur-
pose development environments. In the Lively Kernel we are
relatively fortunate because we are working with graphical
objects that lend themselves naturally to such immediate
feedback. But we also want that kind of feedback for tool
development. When following best practices in software en-
gineering such as test-driven development, running tests is
the immediate feedback that drives developers. When we let
users create their tools and they are working on their data,
they can and should use their own data as testbeds for their
tools.

5.6 Meta-circularity in Tool Development
Meta-circularity is a double-edged sword. Editing each

other’s worlds and parts can break the system for all. What
if someone accidentally publishes a broken version of the
ObjectEditor to the PartsBin? This can happen and as a
result nobody can edit scripts of objects any more. Our ap-
proach does not limit these changes and parts can break, but
working versions will still be available in the repository. We
follow the wiki principle that everyone can change anything
but malicious changes can be undone [13].

Figure 10: Adopting the Inspector using a SplitterMorph

6. EVALUATION: USER CREATED
TOOLS IN WEBWERKSTATT

This section gives a short overview of how much the Parts-
Bin was used in terms of absolute numbers and reports two
examples from how Parts are used to adapt tools in Webw-
erkstatt.

Starting in April 2011 we used parts as our main approach
of developing tools for Lively Kernel in Webwerkstatt. Our
PartsBin is located in the Webwerkstatt SVN repository 1

and in March 2013 it contained more than 667 parts stored
in 60 PartsSpaces, which serve as name-spaces and cate-
gories. Each time a user publishes a part from a World, a
new revision is created. The users created 5690 revisions
uploading parts. The granularity of increments per upload
varies usually a lot and depends also on the user. But usu-
ally many revisions correlate with much development effort,
for example the ObjectEditor (158 revisions) and the Parts-
BinBrowser (100 revisions). They are important tools and
also the parts with the most revisions. These two parts be-
long to the Tools PartSpace, which contains 50 other tools
with in total 683 revisions. As a result of our openness,
21 different authors uploaded at least one revision into that
PartSpace. From the total 941 revisions, 761 were produced
by 5 authors, who also happen to be core developers of the
Lively Kernel project.

In the future we want to look at individual parts and
analyze their derivation history and how they are composed
of other parts. We expect to find both, outdated parts that
are still in use and parts that were reused and evolved in
interesting ways.

6.1 Example: Developing a Splitter Morph
This first example is a real use case from Webwerkstatt.

It shows what kind of simple morphs can be created using
the scripting approach. The SplitterMorph was developed

1http://lively-kernel.org/repository/webwerkstatt

to adjust the extend of two objects as shown in Figure 7.
When the splitter is dragged down, the upper blue morph
gets bigger and the red morph gets smaller. When it is
dragged up again, the process is reversed. The interesting
approach of the SplitterMorph is that it does not need an
explicit configuration. It is only required to be put besides
the two objects like a patch that connects them. By looking
at the bounds of the object, it can detect them and adjust
them appropriately. See the script in the ObjectEditor in
Figure8. There is no explicit configuration required. The
developers, realized that they build something useful and
published their morph in the PartsBin for others to play
with and reuse as shown in Figure 9.

6.2 Example: Evolving the Inspector by
Adding the Splitter Morph

Later, some users see the new SplitterMorph and realize
that the Inspector, a core development tool, misses this fea-
ture and decide to change it. They open a normal inspector
and drag the SplitterMorph to the right position (see Fig-
ure 10) (A). They test the new behavior (B) by interacting
with the Inspector and publish it again to the PartsBin (C).
From then on when users open an inspector they can adjust
it using the splitter morph. This demonstrates that publish-
ing operations do not alway require to actually type code in
Lively. Sometimes object composition can be a powerful
mechanism to develop objects.

7. RELATED WORK
Smalltalk [6] and especially Squeak [8] with its Mor-

phic [15] user interface, provide extremely malleable tools
since everything can be changed at runtime. Hence, directly
adapting the behavior of objects can sometimes be difficult,
since the behavior is defined in classes. Further, these envi-
ronments are single user environments and breaking a sys-
tem with a bad change affects only one person.

Self [21] is an object-oriented programming environment

that allows for programming objects directly. Objects in
Self contain and access data and behavior in a uniform way.
Objects in Self can be transported from one Self world to an-
other [20], but Self does not come with shared repositories of
objects. Instead it approaches the problem of collaborative
development in a shared world. They propose to debug small
problems directly in the world and when bigger problems oc-
cur, they debug the default world from a special debugging
world [19]. Their concern is more on real-time collaboration
compared to the asynchronous wiki-like collaboration in our
approach.

Our approach of cloning objects to directly make changes
and the usage of an online repository of objects to collab-
orate is somewhat similar to GitHub2. GitHub provides a
very direct way of changing things. People can fork a project
and make changes as they like, since they have full control
over the source code. The difference is that GitHub does
only source code and revision management, where Lively is
a development and runtime environment.

Web-based development environments like Cloud93 can be
used to develop themselves. But the process is not direct:
one instance modifies the other instance. This does not allow
to evolve the system while it is being used resulting in longer
feedback loops.

8. CONCLUSION
By lifting the development process of our self-sustaining

system one level up from programmer concepts like modules
and classes to direct editing of end-user-accessible objects,
we make it easy to prototype and adapt tools without acci-
dentally breaking the system.

We value the robustness of the introduced redundancy
higher than the problems. We deliberately increase the re-
dundancy to make it harder to break something, even if this
means that we loose the power of abstraction that estab-
lished software engineering practices give to us.

In future work we want to address how bugs in scripts
can be fixed or new features added to already distributed
objects. A solution can be to trace objects using their copy
history and migrate them as needed.

9. REFERENCES
[1] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke,

and M. Perscheid. A Comparison of Context-oriented
Programming Languages. In Proceedings of the
Workshop on Context-oriented Programming (COP),
co-located with ECOOP 2009, Genoa, Italy. ACM,
2009.

[2] S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Moose: an
Agile Reengineering Environment. SIGSOFT Softw.
Eng. Notes, 30(5):99–102, Sept. 2005.

[3] T. Felgentreff, P. Tessenow, and L. Thamsen. Lively
Groups — Shared Behavior in a World of Objects.
Seminar Report, 2012.

[4] M. Fowler. Blog Entry: gotoAarhus2011, 26 October
2011.

[5] T. Girba. Humane Assessment with Moose, 2011.

[6] A. Goldberg. SMALLTALK-80: The Interactive
Programming Environment. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1984.

2https://github.com/
3https://c9.io/

[7] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented Programming. Journal of Object
Technology, 7(3):125–151, March - April 2008.

[8] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the Future: The Story of Squeak, a
Practical Smalltalk Written in Itself. ACM SIGPLAN
Notices, 32(10):318–326, 1997.

[9] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and
T. Mikkonen. The Lively Kernel A Self-Supporting
System on a Web Page. In S3 2008, LNCS 5146.
Springer-Verlag Berlin Heidelberg, 2008.

[10] R. Krahn, D. Ingalls, R. Hirschfeld, J. Lincke, and
K. Palacz. Lively Wiki A Development Environment
for Creating and Sharing Active Web Content. In
WikiSym ’09. ACM, 2009.

[11] J. Lincke, M. Appeltauer, B. Steinert, and
R. Hirschfeld. An Open Implementation for
Context-oriented Layer Composition in ContextJS.
Science of Computer Programming, 2011.

[12] J. Lincke and R. Hirschfeld. Scoping changes in
self-supporting development environments using
context-oriented programming. In Proceedings of the
International Workshop on Context-Oriented
Programming, COP ’12, pages 2:1–2:6, New York, NY,
USA, 2012. ACM.

[13] J. Lincke, R. Krahn, D. Ingalls, M. Röder, and
R. Hirschfeld. The Lively PartsBin–A Cloud-Based
Repository for Collaborative Development of Active
Web Content. In Hawaii International Conference on
System Sciences, volume 0, pages 693–701, Los
Alamitos, CA, USA, 2012. IEEE Computer Society.

[14] J. Maloney. Morphic: The Self User Interface
Framework. SUN Microsystems, 1995.

[15] J. Maloney. An introduction to morphic: The squeak
user interface framework. Squeak: OpenPersonal
Computing and Multimedia, 2001.

[16] J. H. Maloney and R. B. Smith. Directness and
Liveness in the Morphic User Interface Construction
Environment. In UIST ’95: Proceedings of the 8th
annual ACM symposium on User interface and
software technology, pages 21–28. ACM, 1995.

[17] M. Nordio, H. Estler, C. A. Furia, B. Meyer, et al.
Collaborative software development on the web. arXiv
preprint arXiv:1105.0768, 2011.

[18] E. Sandewall. Programming in an Interactive
Environment: the “Lisp” Experience. ACM Comput.
Surv., 10(1):35–71, Mar. 1978.

[19] R. B. Smith, M. Wolczko, and D. Ungar. From kansas
to oz: collaborative debugging when a shared world
breaks. Commun. ACM, 40(4):72–78, Apr. 1997.

[20] D. Ungar. Annotating Objects for Transport to Other
Worlds. SIGPLAN Not., 30(10):73–87, 1995.

[21] D. Ungar and R. B. Smith. Self: The Power of
Simplicity. Lisp and symbolic computation,
4(3):187–205, 1991.

[22] B. Victor. Inventing on Principle. Invited Talk at
Canadian University Software Engineering Conference
(CUSEC), January 2012.

