Security of Public Continuous Integration Services

Volker Gruhn

Christoph Hannebauer

Christian John

paluno — The Ruhr Institute for Software Technology
University of Duisburg-Essen

{volker.gruhn | christoph.hannebauer}@paluno.de, {christian.john}@stud.uni-due.de

ABSTRACT

Continuous Integration (CI) and Free, Libre and Open Source
Software (FLOSS) are both associated with agile software
development. Contradictingly, FLOSS projects have diffi-
culties to use CI and software forges still lack support for
CI. Two factors hamper widespread use of CI in FLOSS
development: Cost of the computational resources and se-
curity risks of public CI services. Through security analysis
of public CI services, this paper identifies possible attack
vectors. To eliminate one class of attack vectors, the pa-
per describes a concept that encapsulates a part of the CI
system via virtualization. The concept is implemented as a
proof of concept.

Categories and Subject Descriptors

K.6.5 MANAGEMENT OF COMPUTING AND IN-
FORMATION SYSTEMS]: Security and Protection—

Invasive software, Unauthorized access; D.2.3 [SOFTWARE
ENGINEERING]: Testing and Debugging—Monitors

General Terms
Security, Performance

1. INTRODUCTION

Over the course of the last fifteen years, Continuous Integra-
tion (CI) has become an important practice in software de-
velopment. Developers applying this practice commit their
code modifications to the main code repository at least ev-
ery day. Every modification that compiles and passes the
tests should be committed. A dedicated integration ma-
chine continuously compiles and tests the current versions
of the source code. This way, integration problems are de-
tected early. Thus, integration problems are easier resolved
as they do not have time to grow. [15, 13]

Continuous Delivery is an extension to CI. In the Continuous
Delivery approach, the CI system builds the release versions
of the software products that will be shipped to the cus-

tomers [21]. Current trends push this practice even further
and propose to integrate even uncommitted code modifica-
tions [20].

However, in the case of Free, Libre and Open Source Soft-
ware (FLOSS), the advent of CI did not have a measurable
impact on development practices [11]. Antoniades et al. does
not list CI systems as common tools used in FLOSS devel-
opment [3]. This is one of the indications that CI is or at
least was not a common practice in FLOSS development.
This seems surprising at first, since both CI and FLOSS
development are commonly associated with agile software
development [26].

Hundreds of thousands of FLOSS projects do not maintain
their own infrastructure and rely on software forge services
like SourceForge' and github®. These software forge ser-
vices provide a broad range of software development tools
like Version Control System (VCS)s, bug trackers, and web
site and download hosting. They do not usually provide CI
systems, though. Therefore, maintainers of FLOSS projects
have to maintain CI systems on their own servers if they
want to use CI. Small FLOSS projects may rely completely
on software forge services for their server-based tools. Thus,
setting up and maintaining a CI system on their own servers
is a major effort. This is presumably a major fact restraining
the spread of CI among FLOSS projects.

Consequentially, large FLOSS projects that maintain their
own infrastructure anyway hesitate less to use CI: For exam-
ple, Mozilla® uses CI techniques like automated testing [28].
These CI systems integrate and test modifications commit-
ted to the FLOSS project’s VCS repositories automatically.
Hence, even for those large FLOSS projects, CI is restricted
to core developers with access to the project’s VCS reposi-
tories.

After Deshpande’s and Riehle’s study about lacking impact
of CI on FLOSS [11], a couple of organizations started offer-
ing CI as a service in the cloud. Examples include FaZend?,
Travis CI°, tddium®, and CloudBees BuildHive”. Some of

"http://sourceforge.net/
*https://github.com/
3https://www.mozilla.org/
‘http://www.fazend.com/
Shttps://www.travis-ci.org/
Shttps://www.tddium. com/
"https://buildhive.cloudbees.com/

http://sourceforge.net/
https://github.com/
https://www.mozilla.org/
http://www.fazend.com/
https://www.travis-ci.org/
https://www.tddium.com/
https://buildhive.cloudbees.com/

these services offer free usage plans to FLOSS projects and
even integrate into software forge services like github. How-
ever, some of the named CI services place restrictions on
usage in case of the free FLOSS usage plans [9]. Similarly
to the CI systems of large FLOSS projects like Mozilla, only
the core developers of each FLOSS project may use its CI
systems.

A multitenant CI system is a CI system that (i) hosts mul-
tiple projects and (ii) has multiple users each of whom shall
access only some of the projects. These users are called
tenants of the multitenant CI system.

This paper discusses what currently limits the widespread
adoption of CI practices in FLOSS projects in Section 2.
Two major reasons are identified: Resource costs and secu-
rity vulnerabilities specific to multitenant CI systems. The
remaining paper focuses on the second problem of public CI
services, the security vulnerabilities in multitenant CI sys-
tem. The state of research on software security analysis is
presented in Section 7. Section 3 systematically analyzes
possible attack vectors on CI systems. Section 4 proposes
a solution that counters some of the attack vectors identi-
fied in the preceding section. In Section 5, a sample attack
demonstrates the validity of the proposed solution. The lim-
itations of the proposed solution are discussed in Section 6.
The results are summarized in Section 8.

2. CURRENT LIMITS OF FLOSS CI

This section discusses two reasons that limit the widespread
usage of CI systems among FLOSS projects, resource costs
and security.

2.1 Resource costs

Firstly, CI systems need more computational resources than
other software development tools. This is because CI sys-
tems do not only download every patch, but also have to
compile all new versions of the source code and have to run
a possibly large array of tests. These operations constitute
a build job. Each committed source code modification of a
project leads to a new build job in the CI system.

According to Moore’s Law, transistor count and therefore
computing performance doubles every 18 months. Assum-
ing that computing performance is the dominating factor of
costs for resource requirements of a build job, Moore’s Law
reduces the costs of each build exponentially over time.

However, the total number of FLOSS source code lines dou-
bles every 15 months [12]. The number of added FLOSS
source code lines and similar measures double at the same
rate, as they are derivations of the number of lines and
derivations of exponential functions are exponential func-
tions with the same basis again. Therefore, no matter what
specific measure accounts most for the cost of CI mainte-
nance, the described measure may be used to estimate the
growth of computing performance required to provide CI
services to all FLOSS projects. Hence, this required com-
puting performance also doubles every 15 months. Taking
these facts together, the following formula specifies the cost
C(t) to provide CI services to all FLOSS projects at a spe-
cific date, where t is the number of months lapsed since some
fixed start date until that specific date, p(¢) is the comput-

ing performance required to provide CI services to all FLOSS
projects at the specific date, and a(t) is the computing per-
formance available for a constant amount of money:

-
o+

C(t):%:Ql — 215718 — 290

« 21

o
o

&

o0l

This corresponds to a yearly cost increase of 9.7 percent.
It is therefore possible that free usage plans of CI services
for FLOSS projects will decline for economical reasons. The
same argument still applies if CI services shall be provided
only to a constant fraction of FLOSS projects, as this would
not change the rate of cost changes.

One might question the assumption that computing power
is not the dominating factor of costs for resource require-
ments of a build job. In this case, the general argument still
applies, as variations of Moore’s Law also apply to related
resources. For example, hard disk space grows at a similar
rate as computational power, with data density currently
doubling about every two years [23]. This is still exponen-
tially, but slower than computing power, so the yearly cost
increase would be higher.

Accordingly, the same reasoning also applies to other soft-
ware development tools like VCS. Assuming that the cost
of VCSs is largely determined by hard disk prices, the cost
of VCSs for all FLOSS projects increases at a yearly rate of
about 23 percent. Thus, free usage plans for these services
on software forges may become economically unfeasible in
the future.

However, it is unknown for how long the exponential growth
of FLOSS sustains. The growth may become subexponen-
tial before the economical wall for software development de-
scribed above is reached. Additionally, with the growth of
FLOSS in terms of source code, public interest in FLOSS
also grows. This eventually results in increased funding for
FLOSS projects and their maintenance. This may even out
the increased costs of maintenance.

2.2 Security of public CI systems

Secondly, CI systems are more vulnerable to attacks and
misconfiguration than the software development tools cur-
rently offered by software forges: In contrast to the other
software development tools, build jobs require the CI sys-
tems to execute code that developers of the FLOSS project
provide. This custom code may cause errors starting from
unnecessary resource consumption over CI system outages to
espionage, denial-of-service-attacks, virus bridgeheads, and
similar malicious purposes.

For multitenant systems, it’s even worse, as one malicious
tenant may attack other tenants via the CI system. If future
CI services want to provide CI services also for prospective
developers instead of only the core developers of each FLOSS
project, it would be even easier for a malicious attacker to
gain access to the CI systems.

There is a particularly dangerous example of an attack on
CI systems, a variation of the trusting trust attack on com-
pilers [39]: An attacker could modify the CI system in a way
such that software artifacts produced on those system would

be infected with a virus. For Continuous Delivery systems,
infected versions of the software product would spread to
end-users. These infections are insidious, as even a para-
noid end-user who carefully reviews the software product’s
source code would miss the malicious code parts that the
virus infection induces. Eventually, the infected CI system
would build a new infected version of its own software that
hides all traces that an infection has ever happened.

3. SECURITY ANALYSIS OF CI SYSTEMS

This section systematically analyzes attack vectors that ma-
licious tenants of a multitenant CI system may use to attack
the CI system. Of course, all tenants may easily compromise
their own build on the CI system and potentially build ma-
licious software with the help of the CI system. However,
this is not a security risk, as these malicious tenants can also
build malicious software without a public CI system. Thus,
behavior is considered an attack only if the behavior either
damages the CI system as a whole or compromises builds of
other tenants.

The security analysis describes general attack vectors of CI
systems, in contrast to actual flaws of specific implemen-
tations of CI systems. Thus, the attacks described cannot
directly be used to attack a concrete CI system without mod-
ification. An attack on a concrete CI system must use one
of the attack vectors determined in this section, though, but
the attack still has to exploit a flaw in the implementation
or configuration of the CI system.

As explained, the analysis applies to CI systems in general.
Still, the CI system Jenkins® serves as an example and guides
the line of argumentation. Jenkins-stats counts 57,334 Jenk-
ins installations [5]. Hence, Jenkins is a common represen-
tative of a CI system. The concepts explained are common
among implementations of CI systems, although the wording
may be different for other specific implementations.

Langweg and Snekkenes provide a taxonomy of attacks on
software applications. Earlier taxonomies of attacks [24] fo-
cus on whole operation systems. They argue that every at-
tack on a software application has a location, a cause, and
an impact: The attack needs an attack vector through which
the data is transmitted to the target software application,
which they call location. Further, the attack must exploit
a fault in the software or configuration, which they call the
cause of the attack. Finally, the attack allows unauthorized
operations that defy one or more of the security attributes
confidentiality, integrity, and availability [4]. They call these
unauthorized operations the impact of the attack. [25]

The analysis in this section systematically examines the data
inputs to CI systems. The analysis checks which data inputs
can serve as attack vectors. In the taxonomy of Langweg and
Snekkenes, these attack vectors are locations of attacks. For
each attack vector, the possible impact of the attack is dis-
cussed. As described above, Langweg and Snekkenes assign
attacks a third property, the cause. However, causes are
specific to the implementation of a CI system and therefore,
the analysis in this section looks at causes only as far as they
are relevant for CI systems in general.

Shttps://jenkins-ci.org

3.1 Attacks using the web interface

Even in a CI system with only a single tenant, there may
be several projects configured. These projects define among
other things which source codes should be loaded and built,
which events trigger a new build job, and what artifacts
shall be archived after each build job. Different projects
may depend on each other and form a hierarchy.

In a multitenant CI system, these projects separate user
accounts from accessing other tenants’ resources. Users of
the multitenant CI systems can access their own projects
but not the projects of others. CI systems may allow a
much more fine-grained configuration of access rights on a
sub-project level, for example Hudson [31] and Jenkins [38].

Security flaws in CI web interfaces have proven to be us-
able attack vectors [37, 36]. Web services may also open
additional attack vectors. However, these are problems of
web applications in general and not specifically CI systems.
Therefore, this class of problems will not be analyzed more
deeply in this paper.

3.2 Attacks using the build process
Executing a build job in a CI system comprises the four
steps

1. VCS checkout, the build server downloads the source
code from the VCS,

2. Build preparations, the build server sets up the
build environment,

3. Builder runs, the build server compiles the source
code to produce build artifacts, and

4. Notification, the build server notifies the master server
about the results of the build.

The concept of these steps borrows from Prakash’s presen-
tation of build steps in the CI system Hudson [30]. There
are differences in Prakash’s build steps and the build steps
shown here, as Prakash’s build steps describe a build job
from an software architect’s perspective instead of a soft-
ware security analyst’s.

The build server does not execute these steps in strict or-
der. Instead, some steps overlap. For example, Notification
starts with the VCS checkout already. Each step introduces
possible attack vector on the CI system. The following para-
graphs discuss the attack vectors for each of these steps.

VCS checkout. In this step, the build server downloads
the latest version of the source code from the configured
VCS. The downloaded source codes usually also contain
build scripts like Makefiles [16], shell scripts or Visual Stu-
dio project files [27]. These files are not actually compiled
into the produced build artifact to be delivered to the end-
users. Instead, they support the build process with tasks like
pre-processing the source code to target a specific execution
platform or distinguishing between wanted and unwanted
optional modules for a specific build.

https://jenkins-ci.org

This step already involves two possible attacks.

First, the VCS may include external resources. In the VCS
Apache Subversion (SVN)? for example, a directory under
source control may contain the property svn:externals to
specify additional repositories to include in the checkout [10,
Externals Definitions in Chapter 3]. As another example,
the VCS git'? contains a similar feature called submodules
[7, Chapter 6.6].

These VCS features may instruct the build server to exe-
cute Hypertext Transfer Protocol (HTTP) requests to other
servers. Therefore, these requests may

e access data on other web servers with host-based access
restrictions and disclose it to the attacker,

e execute web service commands with host-based access
restrictions on other web servers, or

e consume network bandwidth on the build server and
target other servers in a denial of service attack.

Second, the downloaded source code may contain symbolic
links. Attackers may forge symbolic links to files on the build
server outside of the directory intended for the project. Sub-
routines of the CI system with high privileges may thereby
be tricked to access files on the build server with elevated
access rights. In other programs, there have already been
attacks that exploit symbolic links [22].

Build preparations. In the Build preparations step, the
build server configures the build environment for the build
job. For example, a configure script may prepare files for a
specific target platform or a batch process may copy depen-
dencies to locations required for the builder runs. The Build
preparation step may require execution of arbitrary code, as
requirements varies among projects and it is therefore not
possible to offer only a closed set of preparation options.

After the builder runs, packaging the artifacts may also re-
quire the execution of arbitrary code within some post-build
steps. From a security perspective, these post-build steps
are similar to the Build preparation step. Therefore, they
are also discussed here.

Build preparation steps can be configured directly in the CI
system. For example, Jenkins allows shell commands to be
configured directly via the web interface. An example of a
malicious command is shown in Figure 1.

There are obvious countermeasures against this attack: The
process executing the build may have only restricted user
rights which suppresses malicious parts of the code. Alter-
natively, the CI system may completely forbid its tenants
to configure Build preparation steps. Automated analysis
of build steps may also prevent malicious build steps to be
executed.

“https://subversion.apache.org/
Ohttp://git-scm. com/

Execute shell

Command rm -f -v /

See the list of available environment variables

Figure 1: Screenshot of Jenkins’ web interface. A
build step is configured to delete all system files.

It is not sufficient, however, to only restrict build steps con-
figured directly in the CI system. The build scripts loaded
from the VCS with the source code can also contain arbitrary
code that is executed during the build. FLOSS projects of-
ten use Makefiles [16] which allow execution of arbitrary
commands. Other types of build environments also provide
this possibility. Figure 2 shows how to configure a mali-
cious deletion command in a Visual Studio project file. The
CI system Jenkins can be configured to call the application
MSBuild to execute these Visual Studio project files and
then the build server also executes the commands config-
ured there.

Builder runs. The build server compiles the source codes
and links all libraries in this step. The output are the soft-
ware artifacts of the project. The output also comprises
executable tests that the developers have programmed. The
build server executes these tests and adds the test results to
the output. Plugins may allow the tests to be distributed to
special test servers. This allows tests to be run on multiple
platforms.

An attacker may include malicious behavior in the source
code. Of course, the build server does not execute this ma-
licious code directly, as it is only compiled and linked at
first. However, the build server executes tests and therefore
indirectly also the software product. This way, the attacker
can use the build server to start denial of service attacks
or access restricted web resources. An attack has additional
impact if the user account running the builder run was given
too much rights or if the attackers use a security flaw to el-
evate their rights. In these cases, the attackers could shut
down the build server. As a more sophisticated attack, they
could modify the build server to compile or link virus code
into all software artifacts build on the server. On a multi-
tenant system, the software artifacts of other tenants would
then get infected with malicious code.

As explained in Subsection 2.2, this may lead to a varia-
tion of Thompson’s trusting trust attack [39]: When the CI
system builds a new version of its own software, the com-
promised build server may inject malicious code in the CI
system software. If this is thoroughly executed, this attack is
very difficult to detect, as the CI system may remove almost
all traces that the attack has happened.

In a standard installation of Jenkins with default settings on

https://subversion.apache.org/
http://git-scm.com/

Apphcation

N/A

Build

Build Events Pre-build event command line:

Debug del /5 /Q c\jenkins\filesfromotherprojects

Resources

Services

Settings
Reference Paths

Edit Pre-build ...

Figure 2: Screenshot of Microsoft Visual Studio 2012. A build step is configured to delete files from other

projects.

a Linux Debian server, a builder run may execute commands
on the build server with administrator rights. Thus, the
attacks mentioned above would apply to such a system.

There are multiple countermeasures against the attacks listed
above. Obviously, the account running the builder runs
should be granted only minimal rights. Additionally, the
build server might scan the source code for known malicious
code fragments. However, it is a common practice to store
library dependencies in binary form next to the dependent
source code. An attacker may compile the malicious code
into one of these libraries, so that the source code compiled
on the build server is free of malicious parts, although the
tests indirectly execute the malicious code in the library.
Thus, the build server would need to take the extra step
and also scan the binary libraries. A wide range of com-
mercial programs exists for the task of detecting malicious
binary files. However, malware detectors are unreliable es-
pecially when detecting new malware or new variations of
existing malware [8].

Section 4 presents another approach to counter the attacks
emanating from this step of the build. This approach works
even if all of the countermeasures above are useless or not
even applied. Of course, it is still better to have multiple
lines of defense and also implement the measures mentioned
above where possible.

Notification. The build server reports the current status
and eventually the results of the build back to the master
server. In Jenkins, this includes every line of output to the
console. After the build, the build server may transmit test
results and build artifacts to the master server.

If attackers take control over the build server in one of the
preceding steps, they may modify the data transmitted back
to the master server. There is a weaker and a stronger form
of an attack resulting from these modifications.

Some CI systems display test results or other result data
in a web browser. Jenkins is an example, if it is extended
with appropriate plugins. In the weaker form of the at-
tack, the attackers add executable code like JavaScript code
to the results. In this case, the attackers have to find a
flaw in the master server’s web interface to circumvent the
security mechanisms that suppress execution of such exe-
cutable code. If other tenants open the result data with their

browser, the malicious executable code may act within the
security context of these other tenants from within the web
browser. Thus, the malicious executable code may change
the configuration of other tenants’ projects in the CI sys-
tem. This may enable the malicious code to reproduce itself
to other projects on the CI system.

The stronger form of the attack uses the communication
channel from a compromised build server back to the master
server. The build server uses a flaw in the communication
protocol to take over the whole master server on behalf of
the attackers. Obviously, this would compromise the whole
CI system with all projects from all tenants.

4. SECURE BUILD SERVERS

As shown in Section 3, users of multitenant CI systems may
attack each other through the resources they share in the CI
system. More specifically, attackers may modify the behav-
ior of build servers to affect succeeding build jobs of other
projects on the same build server. Attackers have to use
security flaws in the source code or configuration of the CI
system to accomplish their attack. While the maintainers
may fix each of these security flaws when they become aware
of them, the CI system is always susceptible to zero-day ex-
ploits and the maintainers’ inattentiveness. This section de-
scribes an approach that inhibits attacks from one project to
other projects built on the same build server. At the same
time, the approach does not require a secure configuration
of the build servers.

Through the attacks described in the steps Build prepara-
tions and Builder runs in Section 3, attackers can prepare
a malicious build job that compromises the build server of
the CI system that builds this malicious build job. The
attackers may then use the compromised build server for
their purposes. On a multitenant CI system, build jobs of
projects from other tenants will be scheduled to the same
build server. Attackers may compile malicious code into
the artifacts produced in the build jobs of those projects.
These infected software artifacts may act as Trojan horses
and compromise the computers of end-users of the other
projects. The build processes and infections are depicted as
a Unified Modeling Language (UML) state machine diagram
in Figure 3. Note that the CI system maintainers and ten-
ants of the CI usually cannot distinguish between the states
Clean system and Compromised system. In this paper, a
Default Build Server is a build server as described above,
with the concept described later in this section not applied.

state machine Default Build Serveﬂ

/ Started \

Execute
benign
Build Job

Executing
benign Build
Job

Clean system

Execute Build finished

malicious

Build Job Deliver software

artifact
Executing
Shut- malicious Build
Job

d\c;\'(v/ln Deliver infected

software artifact

Build
finished

Build finished

Compromised Building and
infecting benign
system Execute Build Job
benign

NG Build Job %

state machine

/ Started \

Execute
benign
Build Job

Secure Build Servey

Executing
benign Build
Job

Clean system

Execute
malicious
Build Job

Build
finished

Executing

Deliver software

malicious Build artifact

Job

Compromise VM
system restored

Compromised Restoring

VM snapshot

system

o /

Figure 3: UML state machine diagram accounting
for attacks that infect a Default Build Server.

As explained, there is no generic method to prevent attack-
ers from compromising the build server that executes build
jobs of a malicious project. However, a build server can be
considered in the state Clean system if it has not previously
executed any build jobs. Since build servers executing build
jobs for projects owned by attackers do not need to be in the
Clean system state, this criterion is met if every project has
its own dedicated build server. As the master server controls
all build servers and therefore must not be compromised, the
master server must not be a build server. This approach is
infeasible for CI systems responsible for too many projects
to have one build server for each of these projects. Public CI
systems that offer CI services for FLOSS projects therefore
cannot use this approach.

However, the source code of most FLOSS projects changes
seldomly and only in a few FLOSS projects, the source
code changes often: The FLOSS project meta-repository
Ohloh measures activity on FLOSSprojects. As of 2013-
03-14, Ohloh has 582,716 FLOSS projects in its database.
With the FLOSS projects sorted by Ohloh’s activity mea-
sure, the projects at the 0.1, 1, and 10 percentile are libgit2,
kfusion, and chain-pattern, respectively. These projects had
2279, 60, and 0 commits within the last twelve months, re-
spectively. [6]

Thus, most of the dedicated build servers would be idle most
of the time, even for projects with very high activity. For
example, libgit2 would also cause only about 6.23 builds per
day. Accordingly, the following approach uses virtualiza-
tion to prevent builds from different projects on the same
machine. At the same time, it does not require dedicated
servers for every project.

The concept of a Secure Build Server extends the Default
Build Server as described above. A Secure Build Server
is a Virtual Machine (VM). After every build, a plugin on

Figure 4: UML state machine diagram of an attack
on a CI system using the proposed solution.

the master server restores the VM of the build server to an
original clean state. To improve performance, the VM uses
a virtualization environment that supports snapshots, for
example VirtualBox [29, Chapter 1, Snapshots]. Restoring
a snapshot allows the virtualization environment to quickly
discard all changes made since the start of the VM. Similarly,
Amazon’s cloud services allow using a so called local instance
store to start machines from a specific snapshot [2]. If an
attacker schedules a malicious build job, the build server
will build the malicious build job and the build server will
be compromised, but the build server will be reset before it
executes any other build jobs. Build jobs of other projects
therefore cannot be infected anymore. Figure 4 shows a
UML state machine diagram of such a Secure Build Server.

4.1 Proof of concept

This subsection describes a proof of concept realization of
a Secure Build Server. The realization uses the CI system
Jenkins. The virtualization environment VirtualBox'! hosts
the VMs of the build servers. A modified version of the
Jenkins plugin VirtualBox Plugin'? controls these VMs of
the build servers.

The modified version of the VirtualBox Plugin forks from the
beta version branch “snap”'® that supports VirtualBox snap-
shots. An additional modification ensures that the build
server VMs restart after every build job and thereby restore
a specific snapshot. The modified version developed for this
paper can be downloaded from github'4.

"https://www.virtualbox.org/

2https://wiki. jenkins-ci.org/display/JENKINS/
VirtualBox+Plugin

Bhttps://github.com/jenkinsci/virtualbox-plugin/
tree/snap

“pttps://github. com/paluno/virtualbox-plugin/tree/
snap

https://www.virtualbox.org/
https://wiki.jenkins-ci.org/display/JENKINS/VirtualBox+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/VirtualBox+Plugin
https://github.com/jenkinsci/virtualbox-plugin/tree/snap
https://github.com/jenkinsci/virtualbox-plugin/tree/snap
https://github.com/paluno/virtualbox-plugin/tree/snap
https://github.com/paluno/virtualbox-plugin/tree/snap

4.2 Resource considerations

As explained in Section 2, computational resources and se-
curity are two major problems limiting widespread CI use
for FLOSS projects. The approach presented in this sec-
tion increases security, as it prevents all attacks that use the
build server to attack other tenant’s builds. However, this is
a trade-off, because the CI system has to restore a VM for
every build. This subsection measures the impact on per-
formance and therefore computational resources to take this
trade-off into consideration.

The time needed to execute a build job depends on prop-
erties of the project: The build tools, the number of lines
of source code, and the programming language, for example.
Another important factor is the performance of the hardware
the build server runs on. The project and the hardware are
both implementation specific and therefore will not be re-
garded here. Hence, this analysis disregards the time of the
actual Build Job’s execution. Instead, the analysis compares
the start up times of a Default Build Server and a Secure
Build Server as described above.

The performance tests ran in the test environment described
in the last subsection. The Jenkins master server runs on
a Linux VM on a physical Windows system. Two Jenkins
slaves representing a Default Build Server and a Secure Build
Server run as VMs on another physical system, which runs
Linux. Both physical systems have a four core Intel Atom
330 Central Processing Unit with 4x1.6 GHz, 2 GB physical
memory, and a 250 GB SATA hard drive with 7200 RPM.

In the performance test, two build jobs are issued simul-
taneously on the Jenkins master server. There is a delay
of about three seconds between the starts of the two build
jobs, as they were issued manually via the web interface.
Figure 5 shows a UML timing diagram where this issuance
on the Jenkins master server is at time 0 seconds. After
between 20 to 28 seconds, the VirtualBox host starts resum-
ing or restoring the VMs. The Default Build Server needs
about 58 seconds after the build job was issued to resume
and start executing the build job. The Secure Build Server
needs about 140 seconds to restore the original snapshot and
then start executing the build job.

The concept of a Secure Build Server described in this sec-
tion has no influence on the time needed to execute a build
job for the first time. However, a Secure Build Server needs
more time for subsequent build jobs, as the Build Server can-
not store intermediate data of the build job. For example,
while a Default Build Server only loads the modifications
of the source code since the last build job from the VCS, a
Secure Build Server has to download the whole source code
for every build job. Additionally, a Default Build Server
may reuse intermediate files from the last build job. Ex-
amples are object files for unmodified source code files in
the programming language C. The performance decrease of
a Secure Build Server in practice may therefore be greater
than the pure start up times of the Build Server as analyzed
in this subsection.

S. VALIDATION

This section describes the validation of the approach de-
scribed in Section 4. First, an attack is devised that mod-

ifies a build server such that all later builds on this server
produce modified versions of software artifacts. The attack
is sufficient to inject malicious code into these modified ver-
sions. However, an actual infection is not necessary for a
proof of concept and will not be part of the attack. Second,
the devised attack executes on a Default Build Server in the
test environment described in Section 4. This shows that
the Default Build Server is vulnerable to the attack. Third,
the devised attack fails on a Secure Build Server as defined
in Section 4. This shows that the approach successfully pre-
vents these kinds of attacks.

5.1 Attack scheme

As an example scenario, the CI system consists of a standard
Jenkins installation with one master server and two managed
slave servers. All systems run on a minimal Debian Linux
environment. The master server connects to the slave servers
via Secure Shell (SSH) tunnels. One slave server is a Default
Build Server, the other slave server is a Secure Build Server.
The master server only dispatches build jobs but is not a
build server itself.

We demonstrate the attack on a fictive FLOSS project ABC
that we set up for this validation in the environment de-
scribed above. Any real FLOSS project would have also
worked, as the weakness relies on the configuration of the
CI system alone. ABC’s SVN repository resides on servers
with the domain name svn.example.com. The CI system
also hosts a second project named Mallet. Unknowingly to
the CI system and the ABC maintainers, Mallet tries to in-
ject malicious code into the build artifacts of project ABC.

Mallet’s strategy exploits the fact that the build server per-
forms all build jobs. Mallet redirects access to ABC’s SVN
repository to its own SVN repository that contains modified
code. Mallet achieves this with a modification of the hosts
file on the build server. A post-build steps of Mallet’s build
adds an entry for svn.example.com to the hosts file with
an Internet Protocol (IP) address that Mallet controls, in
this example 192.168.21.59. This post-build step consists
of the following line of shell script:

echo ’192.168.21.59 svn.example.com’ >> /etc/hosts

5.2 Attack on a Default Build Server

After Mallet’s build, the file hosts contains an entry claim-
ing that the host name svn.example.com resolves to the
IP address 192.168.21.59, a server that Mallet controls.
When the build server builds ABC the next time, the build
server tries to fetch the freshest source code for project
ABC. ABC has an SVN repository configured on the server
svn.example. com, so the build server resolves this host name.
As the hosts file has a higher priority than Domain Name
System (DNS), the build server does not resolve the correct
IP address. Instead, the Default Build Server resolves the 1P
address 192.168.21.59 that Mallet configured in the hosts
file.

Thus, the Default Build Server does not download the actual
ABC source code from svn.example.com, but instead some
modified version from Mallet’s server. Mallet might have
configured the server to forwards requests for the SVN repos-
itory on 192.168.21.59 to the actual SVN repository on

sd VM restore performance)
o < Started { 20to028s } { ~140 seconds } r
ST o - N
3= 2 Restoring =
2 @ & Suspended G—FQ) :
£ 5 5 Started | Buildlob Lo f~5gseconds |
& 5 2 Resuming | scheduled |
i Suspended
seconds 0 60 120 150

Figure 5: UML timing diagram of the VM start up latency in the test environment.

svn.example.com. In this case, changes on svn.example.com
still propagate to the software artifacts build on the CI sys-
tem. Mallet’s server might add malicious source code while
forwarding the original source code. Thus, the modification
would be difficult to detect for the ABC developers, as it
does not show in the logs. In the actual implementation
of this proof of concept, Mallet’s server just delivers differ-
ent source codes instead of actual malicious source code, as
it is obvious that delivering malicious source code is easily
possible.

5.3 Attack on a Secure Build Server

Mallet now launches the same attack on a CI system that
implements the approach described in Section 4, a Secure
Build Server. Contrary to the previous course of events, the
Secure Build Server resets the VM of the slave server after
Mallet’s build job. This restores the original hosts file and
reverts Mallet’s changes. When building ABC afterwards,
the build server resolves svn.example.com to the correct IP
address from DNS and loads the unmodified ABC source
code. Thus, Mallet’s attack was unsuccessful.

There are more obvious and direct countermeasures to pre-
vent the devised attack. Running the build jobs on the build
server in a restricted user account that has no access to the
hosts file suffices already. However, the attack may be re-
fined to outdo these countermeasures again, like combining
the devised attack with a rights elevation attack. Of course,
there are also countermeasures against these rights eleva-
tion attacks. Additionally, different but similar attacks to
the shown attack also have obvious and direct countermea-
sures, like fixing a security flaw that allowed attackers to
take over the build server. However, specific countermea-
sures only work against specific attacks. The devised attack
is therefore only a trivial representative of a larger class of
attacks, each of which has a specific countermeasure. The
approach described in Section 4 prevents all attacks in this
larger class.

6. LIMITATIONS

The Secure Build Server concept described in Section 4 has
limitations that this section will discuss.

The build jobs are encapsulated and cannot influence each
other, as the VM acting as Secure Build Server is restored

to a clean snapshot after every build job. There are two
methods that attackers may use to bypass the encapsulation.

First, attackers can use a flaw in the VM code to escape the
VM. This way, they can compromise the computers hosting
the VMs. Subsequently, they can compromise other VMs or
other parts of the computer infrastructure. [33]

Yet, VM escapes are not a problem specific to Secure Build
Servers. In fact, if cloud services like Amazon EC2' host the
Secure Build Servers, attackers might escape any VM that
Amazon EC2 hosts to achieve the same goals as escaping a
Secure Build Server. It would even be easier for the attackers
to escape a VM that they themselves own, as they would
have full control over these VMs without the need to find
and exploit flaws in the CI system.

Second, the Paragraph Notification in Subsection 3.2 ex-
plained that a compromised build server could attack the
master server of the CI system. Restoring a snapshot of the
Secure Build Server would remove malicious code from the
Secure Build Server, but the malicious code would survive
on the master server. The compromised master server could
easily compromise the Secure Build Server again after it re-
stored the snapshot. The master server could compromise
other build servers as well.

As explained in Section 2, the cost of computational re-
sources is another problem of public CI systems. Subsection
4.2 showed that Secure Build Servers perform worse than
Default Build Servers. In practical applications, the security
benefit might not be worth the added costs of computational
resources.

7. RELATED WORK

This section gives a summary of current research on security
solutions based on virtualization.

Rosenblum and Garfinkel describe advantages and challenges
in virtualization research. One section is also dedicated to
security properties of VMs. Monitors running outside the
VMs can analyze attacked system even down to the hard-
ware level. Attacks are therefore more difficult to conceal.
They also suggest to use VMs to separate environments or

Bhttps://aws.amazon.com/ec2/

https://aws.amazon.com/ec2/

applications from each other. The solution in Section 4 may
be seen as a special case of this general idea. [34]

They further elaborate that VMs with a dedicated pur-
pose should only be allowed network access as far as nec-
essary. This Guest OS Independence, as they call it, al-
lows more fine-grained access control than solutions without
VMs. This concept allows to prevent attackers from using
Secure Build Servers for denial of service attacks. [17]

Price compares security advantages and disadvantages of
virtualization. The list of advantages contains encapsula-
tion as the possibility to run different applications without
influencing each other. Disadvantages that implementors of
the solution described in this paper should consider include
rollback vulnerabilities: Administrators may install security
patches on VMs like the Secure Build Servers. If the VMs
restore snapshots without the security patches afterwards,
the VMs are vulnerable again. This may happen unknown
to the administrators, who consider the VMs patched. [32]

8. CONCLUSION AND FUTURE WORK

This paper argued that small FLOSS projects rely on soft-
ware forge services instead of maintaining their own infras-
tructure for development tools. Therefore, more FLOSS
projects could profit from CI techniques if software forge ser-
vices offered CI systems as a service. Large FLOSS projects
with their own infrastructure may speed up development
if external developers could use their CI systems. How-
ever, public CI systems with multiple independent tenants
suffer from two problems before they can be used exten-
sively. First, CI systems come with high costs because of the
required computation, bandwidth, and memory resources.
Second, as all tenants execute their own code on the CI sys-
tems, tenants may cause malicious or non-malicious failures
that affect other tenants.

A security analysis showed the attack vectors enabling fail-
ures to spread from one tenant’s part of the CI system to the
others’. One class of attack vectors starts on the build server
that executes the tenant’s own code. Section 4 detailed a
concept that encapsulates build job via virtualization and
snapshots, creating a Secure Build Server. The CI system
resets the Secure Build Servers back to an original and un-
compromised state after each and every build job. Thereby,
Secure Build Servers prevent attacks that rely on multiple
build jobs on the same build server, even if the attacks are
not detected. A proof of concept implementation on the CI
system Jenkins shows that the concept of a Secure Build
Server can be realized.

8.1 Future Work

A pattern language is a concept to formally cover problems
and their solutions of some engineering domain in a com-
prehensible and adaptable way. Ideally, each pattern in the
pattern language identifies one invariant among a group of
problems and their solutions [1]. Schumacher and Roedig
suggest to specify security problems and their solutions as
security patterns [35]. For example, Fernandez and Pan have
specified authorization control as security patterns [14]. The
problem and solution presented in Section 4 could be writ-
ten as a pattern. Thereby, other use cases for encapsulation
through virtualization may emerge. Furthermore, the re-

lationship of the solution presented in this paper to other
security solutions may come out more clear.

In our ongoing work, we study the concept of a Wiki Devel-
opment Environment (WikiDE) that minimizes the contri-
bution barrier to software development projects. A public
CI system is an important part of a WikiDE. Nevertheless,
FLOSS projects that do not employ a WikiDE can still take
advantage of a public CI system. [19, 18]

Restoring an uncompromised state unconditionally after ev-
ery build job reduces performance of the CI system. Hence,
Secure Build Servers are a trade-off between performance
and security. This trade-off can be improved in some cases:
If one developer modifies the source code of one project mul-
tiple times, this causes multiple build jobs, one for every
modification. A single build server can execute these build
jobs without restoring an earlier state and without reducing
security, as only one tenant of the CI system is affected.

Furthermore, this partially applies to dependency projects:
Assume project A depends on project B, so project A uses
some build artifacts of project B as input. If project B con-
tains malicious code, the build process of project A can be
compromised—independent from the fact whether the build
server had executed a build job of project B previously: If
the build server was uncompromised before building project
A, it can be compromised through the build artifacts of
project B that are used as input. This allows reusing a
Secure Build Server to execute build jobs from project A
even if it has executed a build job from project B before.
However, this is a one-way trust and a Secure Build Server
must not execute build jobs from project B after executing
build jobs from project A.

Therefore, future research should develop strategies to sched-
ule builds to Secure Build Servers, so performance is opti-
mized while maintaining the same level of security as a Se-
cure Build Server that restores a snapshot after every build
job.

9. REFERENCES

[1] C. Alexander. The Timeless Way of Building. Oxford
University Press, 1979.

[2] Amazon Web Services, Inc. Amazon EC2 FAQs, Mar.
2013. http://aws.amazon.com/en/ec2/faqs [accessed
2013-03-28].

[3] I. Antoniades, I. Samoladas, S. K. Sowe, G. Robles,
S. Koch, K. Fraczek, and A. Hadzisalihovic. Study of
available tools. EU Framework deliverable,
FLOSSMetrics Consortium, 2008.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. Dependable and
Secure Computing, IEEE Transactions on, 1(1):11-33,
2004.

[5] D. Bartholdi. Total jenkins installations, Feb. 2013.
http://stats. jenkins-ci.org/jenkins-
stats/svg/total-jenkins.svg [accessed 2013-03-28].

[6] Black Duck Software. Ohloh, Mar. 2013.
http://www.ohloh.net/ [accessed 2013-03-14].

[7] S. Chacon. Pro Git. Apress, 2009.

http://aws.amazon.com/en/ec2/faqs
http://stats.jenkins-ci.org/jenkins-stats/svg/total-jenkins.svg
http://stats.jenkins-ci.org/jenkins-stats/svg/total-jenkins.svg
http://www.ohloh.net/

[10]

[11]

[12]

[13]

[14]

[15]

[16

[17]

[18]

[19]

http://git-scm.com/book [accessed 2013-03-28].

M. Christodorescu and S. Jha. Testing malware
detectors. SIGSOF'T Softw. Eng. Notes, 29(4):34-44,
July 2004.

CloudBees Developer Resources. CloudBees FOSS
Program, 2013. http://www.cloudbees.com/foss
[accessed 2013-03-28].

B. Collins-Sussman, B. W. Fitzpatrick, and C. M.
Pilato. Version Control with Subversion. O’Reilly
Media, 1.7 edition, 2011.
http://svnbook.red-bean. com/ [accessed
2013-03-28].

A. Deshpande and D. Riehle. Continuous Integration
in Open Source Software Development. In B. Russo,
E. Damiani, S. Hissam, B. Lundell, and G. Succi,
editors, Open Source Development, Communities and
Quality, volume 275 of IFIP International Federation
for Information Processing, pages 273—-280. Springer
Boston, 2008.

A. Deshpande and D. Riehle. The total growth of
open source. In Fourth International Conference on
Open Source Software, Sept 2008.

P. M. Duvall, S. Matyas, and A. Glover. Continuous
Integration: Improving Software Quality and Reducing
Risk. Addison-Wesley Professional, 2007.

E. B. Fernandez and R. Pan. A pattern language for
security models. In 8th Conference on Pattern
Languages of Programs (PLoP), 2001.

M. Fowler. Continuous integration, May 2006.
http://martinfowler.com/articles/
continuousIntegration.html [accessed 2013-03-28].
Free Software Foundation, Inc. Gnu make, July 2010.
https://www.gnu.org/software/make/ [accessed
2013-03-28].

T. Garfinkel and M. Rosenblum. When virtual is
harder than real: security challenges in virtual
machine based computing environments. In
Proceedings of the 10th conference on Hot Topics in
Operating Systems - Volume 10, 2005.

V. Gruhn and C. Hannebauer. Components of a
wiki-based software development environment. In
E-Learning, E-Management and E-Services (IS3e),
2012 IEEE Symposium on, 2012.

V. Gruhn and C. Hannebauer. Using Wikis as
Software Development Environments. In Proceedings
of the 11th International Conference on Intelligent
Software Methodologies, Tools and Techniques
(SoMeT_12), Frontiers in Artificial Intelligence and
Applications. IOS International Publisher, October
2012.

M. L. Guimarées and A. R. Silva. Improving early
detection of software merge conflicts. In Proceedings of
the 34th International Conference on Software
Engineering (ICSE 2012), 2012.

J. Humble and D. Farley. Continuous Delivery:
Reliable Software Releases through Build, Test, and
Deployment Automation. Addison-Wesley
Professional, 2010.

C. Ko, G. Fink, and K. Levitt. Automated detection
of vulnerabilities in privileged programs by execution
monitoring. In Computer Security Applications
Conference, 199/. Proceedings., 10th Annual, pages

23]

24]

(25]

[26]

27]

(28]

29]

30]

(31]

32]

(33]

(34]

(35]

(36]

37]

(38]

39]

134-144, Dec. 1994.

M. Kryder and C. S. Kim. After hard drives—what
comes next? Magnetics, IEEE Transactions on,
45(10):3406-3413, Oct.

C. E. Landwehr, A. R. Bull, J. P. McDermott, and
W. S. Choi. A taxonomy of computer program security
flaws. ACM Comput. Surv., 26(3):211-254, Sept. 1994.
H. Langweg and E. Snekkenes. A classification of
malicious software attacks. In Performance,
Computing, and Communications, 2004 IEEE
International Conference on, pages 827 — 832, 2004.
A. M. Magdaleno, C. M. L. Werner, and R. M.

de Araujo. Reconciling software development models:
A quasi-systematic review. Journal of Systems and
Software, 85(2):351 — 369, 2012.

Microsoft Developer Network. MSBuild Project File
Schema Reference, 2013.
http://msdn.microsoft.com/en—
us/library/5dy88c2e.aspx [accessed 2013-03-28].
Mozilla Developer Network. Mozilla automated
testing, Mar. 2013.
https://developer.mozilla.org/en—
US/docs/Mozilla/QA/Automated_testing [accessed
2013-03-28].

Oracle Corporation. Oracle VM VirtualBox User
Manual, version 4.2.10 edition, Mar. 2013.
http://www.virtualbox.org/manual/ [accessed
2013-03-28].

W. Prakash. Hudson execution and scheduling
architecture, Nov. 2010. http://www.hudson-
ci.org/docs/HudsonArch-Execution.pdf [accessed
2013-03-28].

W. Prakash. Hudson security architecture, Dec. 2010.
http://www.hudson-ci.org/docs/HudsonArch-
Security.pdf [accessed 2013-03-28].

M. Price. The paradox of security in virtual
environments. Computer, 41(11):22-28, 2008.

J. S. Reuben. A survey on virtual machine security. In
Fall 2007 Seminar of Network Security. Helsinki
University of Technology, 2007. http://www.tml.tkk.
fi/Publications/C/25/papers/Reuben_final.pdf
[accessed 2013-03-28].

M. Rosenblum and T. Garfinkel. Virtual machine
monitors: current technology and future trends.
Computer, 38(5):39-47, 2005.

M. Schumacher and U. Roedig. Security engineering
with patterns. In 8th Conference on Pattern
Languages of Programs (PLoP), 2001.

SecurityFocus. Jenkins Multiple Cross Site Scripting
and Directory Traversal Vulnerabilities, Mar. 2012.
http://www.securityfocus.com/bid/52384/
[accessed 2013-03-28].

SecurityFocus. Jenkins Multiple HTML Injection
Vulnerabilities, Feb. 2012.
http://www.securityfocus.com/bid/52055/
[accessed 2013-03-28].

J. F. Smart. Jenkins: The Definitive Guide. O’Reilly
Media, 2011.

K. Thompson. Reflections on trusting trust. Commun.
ACM, 27(8):761-763, Aug. 1984.

http://git-scm.com/book
http://www.cloudbees.com/foss
http://svnbook.red-bean.com/
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
https://www.gnu.org/software/make/
http://msdn.microsoft.com/en-us/library/5dy88c2e.aspx
http://msdn.microsoft.com/en-us/library/5dy88c2e.aspx
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Automated_testing
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Automated_testing
http://www.virtualbox.org/manual/
http://www.hudson-ci.org/docs/HudsonArch-Execution.pdf
http://www.hudson-ci.org/docs/HudsonArch-Execution.pdf
http://www.hudson-ci.org/docs/HudsonArch-Security.pdf
http://www.hudson-ci.org/docs/HudsonArch-Security.pdf
http://www.tml.tkk.fi/Publications/C/25/papers/Reuben_final.pdf
http://www.tml.tkk.fi/Publications/C/25/papers/Reuben_final.pdf
http://www.securityfocus.com/bid/52384/
http://www.securityfocus.com/bid/52055/

	1 Introduction
	2 Current Limits of FLOSS CI
	2.1 Resource costs
	2.2 Security of public CI systems

	3 Security Analysis of CI systems
	3.1 Attacks using the web interface
	3.2 Attacks using the build process

	4 Secure Build Servers
	4.1 Proof of concept
	4.2 Resource considerations

	5 Validation
	5.1 Attack scheme
	5.2 Attack on a Default Build Server
	5.3 Attack on a Secure Build Server

	6 Limitations
	7 Related Work
	8 Conclusion and Future Work
	8.1 Future Work

	9 References

